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Abstract 

A hydrophobic biopolymer, corn zein, was studied as a carrier for manufacturing 

particulate delivery systems of antimicrobials with sustained release. Three techniques, i.e., 

solvent attrition, supercritical anti-solvent and spray drying, were investigated to produce 

lysozyme-loaded zein micro- or nanocapsules. The work was focused on particle synthesis and in 

vitro release kinetics as affected by formulations and processes.  

The size (100-200 nm) and morphology (separated or connected) of the zein 

nanoparticles produced using solvent attrition were significantly affected by shear force, ethanol 

and zein concentrations in stock solutions during synthesis. Zein nanoparticles showed gradual 

release of lysozyme at pH 7 and 8 but no sustained release at lower pHs. Further, the impact of 

adding 1% zein nanoparticles in model carboxymethylcellulose solutions (adjusted to pH 3 to 9) 

was studied for viscosities that increased with pH.  

Microcapsules produced from supercritical anti-solvent showed a continuous matrix with 

internal voids. Sustained release of lysozyme at pH 2 to 8 was observed over 36 days at room 

temperature, with slower release at higher pH. At pH 4, release kinetics was further slowed by 

addition of sodium chloride.  

Spray drying was studied as one commercially feasible process. To further reduce the 

material cost, partial purification of lysozyme from hen egg white was studied using binary 

aqueous alcohol. Extraction with 50% ethanol at pH 3.5 for 6 h enabled high lysozyme activity 

and relatively high purity. Lysozyme precipitated after increasing the ethanol concentration from 

50% to 90% in the extract. The precipitates were resolubilized by dilution to 50% ethanol. 

Slurries after increasing ethanol concentration from 50% to 60%-90%, with or without additives 
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of Tween 40 or thymol, were spray dried. Capsules without additives were porous and did not 

show sustained release of lysozyme. The addition of Tween 40 changed the capsule 

microstructure to packed nanoparticles but did not achieve sustained release of lysozyme. 

Thymol facilitated the formation of a continuous capsule matrix and allowed sustained release of 

lysozyme at near neutral pH.  

Findings from this work demonstrated the possibility of using zein as a carrier 

biopolymer to deliver antimicrobials in food matrices for sustained release.  
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1.1. Role of Antimicrobials in Food Safety and Quality 

Food products may lose some quality due to chemical, physical, enzymatic, and 

microbiological changes during the production and storage (Davidson and Branen 2005). Among 

these changes, microbiological problems receive considerable attention from consumers, 

manufacturers and regulatory agencies because microbial contamination is dynamic and not 

easily controlled. Growth of microorganisms in foods could accelerate the deterioration of foods, 

resulting in off-colors, off-flavors or -orders, texture changes, or slime, and hazards to the health 

of consumers due to the presence of pathogenic microorganisms or production of microbial 

toxins in food products (Davidson and Branen 2005). 

Traditionally, foods were preserved by use of heat, cold, drying and/or fermentation 

(Davidson and Branen, 2005). Currently, both natural and synthesized food antimicrobials are 

widely added to foods to prevent problems caused by microbial growth. Antimicrobials delay the 

spoilage of foods and potentially inhibit the growth of foodborne pathogens. The application of 

antimicrobials, along with preservation treatments including chilling or freezing, thermal 

processing, non-thermal processing (e.g., high pressure), dehydration or reducing water activity, 

nutrient restriction, acidification, fermentation, and modified atmospheres may effectively form 

barriers or hurdles to inhibit or destroy microorganisms in food products. Thus, these treatments 

enhance food microbial safety to ensure or extend the shelf life of food products.   

 

1.2. Demands and Challenges of Antimicrobial Delivery Systems 

The inactivation and inhibition effects of antimicrobial agents are strongly dependent on 

many factors, including intrinsic environmental factors in foods (e.g., pH, salt concentration and 

other reactive chemical components), extrinsic environmental factors (mainly storage 
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temperature and relative humidity), and types of target microorganisms in food products 

(Davidson and Branen 2005). Enzymatic inactivation, diffusion of antimicrobial agents into food 

components and binding or reaction of these compounds with food or cell matrices decreases the 

bioavailability of antimicrobials (Chi-Zhang et al., 2004, Hoffman et al. 2001). Additionally, 

antimicrobial resistance may develop, causing the loss of inhibitory effects on spoilage 

microorganisms or foodborne pathogens. Consumer demand for a reduction in “food 

preservatives” is increasing. Thus, research has focused recently on developing delivery systems 

for antimicrobials that involve “natural antimicrobials” and sustained release (Bezemer et al. 

2000, Gouin 2004, Salmaso et al. 2004), which could potentially decrease the usage of synthetic 

antimicrobials as well as reduce the concentration required while increasing their bioavailability. 

1.2.1. Purpose and Usage 

Edible or non-edible packaging films with incorporated with antimicrobials, coatings and 

microcapsules or microparticles entrapped with antimicrobials are the main methods to deliver 

antimicrobials to foods. Packaging films and coatings with antimicrobial agents have been 

applied to solid foods (i.e., meat, cheese/ham, beef, poultry, etc.) and it has been demonstrated 

that the agents were released and diffused onto the foodstuff to inhibit the growth of 

microorganisms (Ming 1997, Scannel 2000, Cutter and Siragudsa 1996, Natrajan and Sheldon 

2000, Meyer 1959, and Ouattara 2000). Microcapsules may be applied in semi- and/or liquid 

foods to increase the fresh bioavailability and inhibition efficacy of antimicrobial agents for 

longer times, or to protect volatile antimicrobials, such as plant essential oils. While 

antimicrobial packaging films have been studied to a great extent, particulate delivery systems 

for antimicrobial agents have received less attention.  
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Controlled release systems composed of microparticles have been mainly studied and 

developed in drug delivery for pharmaceutical applications (Bezemer et al. 2000, Kuijpers et al. 

1998). Salmaso et al. (2004) showed that nisin-loaded poly(-L-lactide) (PLA) nanoparticles 

produced by CO2 anti-solvent precipitation had sustained release of nisin over 45 days, whereas 

non-encapsulated nisin lost its antimicrobial properties after 10 days. However, in this successful 

investigation of nisin-loaded PLA capsules, the material of the delivery vehicle, PLA, is not 

allowed to be directly added in food products. Many polymers and solvents used in the 

production of drug delivery systems are questionable for food applications due to the safety 

restrictions on ingredients and solvents used. Further, most processes cannot be scaled up to meet 

the capacity of food production. Identification of food grade ingredients as carriers, solvents and 

low-cost and scalable processes remains a challenge for developing food grade antimicrobial 

delivery systems. 

1.2.2. Carrier Materials and Antimicrobial Agents 

Carrier or film materials of delivery systems normally are biopolymers (polysaccharides 

and proteins), lipids, or combinations of lipids and biopolymers (Gibbs et al. 1999, Gharsallaoui 

et al. 2007, Taylor et al. 2005). Most food grade carbohydrate and protein ingredients are water 

soluble so that the release of encapsulated antimicrobials is rapid in aqueous media. Because 

microorganisms grow in aqueous or high water content foods, water soluble materials are 

questionable as carrier materials for long-time release purposes. Conversely, water insoluble 

materials may be used for development of particulate delivery systems whose stabilities maybe 

maintained in long term when dispersed in foods. As for the types of antimicrobials, weak 

organic acids (e.g. lauric acid), enzymes (e.g., lysozyme), bacteriocins (e.g., nisin), and essential 
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oils, etc. (Joerger 2007; Hoffman et al. 2001; Janes et al. 2002, Gaysinsky et al. 2007, Taylor et 

al. 2008) are common antimicrobial agents incorporated or entrapped in delivery systems. 

1.2.3. Techniques for Developing Antimicrobial Delivery Systems 

Various manufacturing techniques have been applied for encapsulation in food industry, 

including spray drying, spray chilling or spray cooling, spinning disk and centrifugal co-

extrusion, extrusion coating, fluidized bed coating, coacervation, liposome entrapment, alginate 

beads, rapid expansion of supercritical solutions (RESS)/supercritical anti-solvent (SAS) 

techniques and inclusion encapsulation (Gouin 2004). However, due to the nature/properties of 

the ingredients, cost-of-use, production capacity and/or controlled release mechanism, not all 

techniques are feasible for development of antimicrobial delivery system. Identification of 

appropriate techniques for appropriate antimicrobials is critical for successful delivery of 

antimicrobials. 

 

1.3. Scope of the Work 

The overall goal of this work was to investigate the potential application of corn zein, 

prolamines, as carrier materials for manufacturing particulate antimicrobial delivery systems. 

Three techniques, i.e., solvent attrition, supercritical anti-solvent and spray drying, were 

investigated, producing a range of antimicrobial delivery systems with sizes of micro- and 

nanoscales. The size of particles is important for ingredients applied in food products so that 

these particles entrapped with antimicrobials will not affect the sensory property of food 

products, e.g., mouthfeel. The effect of zein nanoparticles on rheological properties of a model 

biopolymer solution was also studied.  
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Lysozyme, a widely used naturally-occurring enzyme that has antimicrobial properties, 

was selected as a model antimicrobial in this study. Purified, lyophilized commercial lysozyme 

was used for the techniques of solvent attrition and supercritical anti-solvent. For spray drying (a 

more established technique), lysozyme was directly extracted from hen egg white and used for 

particle production to decrease the eventual cost of antimicrobial delivery systems. In vitro 

release kinetics of lysozyme from these particles was evaluated. The structures of synthesized 

microparticles were determined using surface scanning electron microscopy to study the 

correlation between microstructure and release kinetics.  

 



www.manaraa.com

 7

References 

Bezemer, J.M., R. Radersmaa, D.W. Grijpmaa, P.J. Dijkstraa, J. Feijena , and C.A. van 

Blitterswijk. 2000. Zero-order release of lysozyme from poly (ethylene glycol) / poly 

(butylene terephthalate) matrices. J. Control. Rel. 64: 179-192. 

Chi-Zhang, Y., Yam, K.L., Chikindas, and M.L., 2004. Effective control of Listeria 

monocytogenes by combination of nisin formulated and slowly released into a broth 

system. Int. J. Food Microbiol. 90: 15–22. 

Cutter, C.N. and Siragusa, G.R. 1996. Reduction of Brochothrix thermonsphacta on beef 

surfaces following immobilization of nisin in calcium alginate gels. Lett. Appl. Microbiol. 

23: 9-12. 

Davidson, P.M. and A.L. Branen. 2005. Antimicrobials in foods – An introduction. in P.M. 

Davidson, J.N. Sofos and A.L. Branen (ed.). Antimicrobials in Food, 3rd edition, CRC 

Press, Boca Raton, FL. 

Gaysinsky, S., T.M. Taylor, P. M. Davidson, B.D. Bruce and J. Weiss. 2007. Antimicrobial 

efficacy of eugenol microemulsions in milk against Listeria monocytogenes and 

Escherichia coli O157:H7. J. Food Prot. 70: 2631-2637. 

Gharsallaoui, A., G. Roudaut, O. Chambin, A. Voilley, and R. Saurel. 2007. Applications of 

spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40: 

1107-1121.  

Gibbs, B.F., S. Kermasha, I. Alli, and C.N. Mulligan. 1999. Encapsulation in the food industry: a 

review. Int. J. Food Sci. Nutri. 50: 213-223. 

Gouin, S.. 2004. Microencapsulation: industrial appraisal of existing technologies and trends. 

Trends in Food Sci. Technol. 15: 330-347. 



www.manaraa.com

 8

Hoffman, K. L., I.Y. Han, and P.L. Dawson. 2001. Antimicrobial effects of corn zein film 

impregnated with nisin, lauric acid, and EDTA. J. Food Prot. 64: 885-889. 

Janes, M.E., S. Kooshesh, and M.G. Hohnson. 2002. Control of Listeria monocytogenes on the 

Surface of Refrigerated, Ready-to-eat Chicken Coated with Edible Zein Film Coatings 

Containing Nisin and or Calcium Propionate. J. Food Sci. 67: 2754-2757. 

Joerger, R. D. 2007. Antimicrobial films for food applications: A quantitative analysis of their 

effectiveness. Packag. Technol. Sci. 20: 231-273.  

Kuijpers A.J., G.H.M. Engbers, P.B. van Wachem , J. Krijgsveld, S.A.J. Zaat, J. Dankert, and J. 

Feijen. 1998. Controlled delivery of antibacterial proteins from biodegradable matrices. J. 

Control Release 53: 235-247.     

Meyer, R.C., A.R. Winter, and H.H. Weiser. 1959. Edible protective coatings for extending the 

shelf life of poultry. Food Technol. 13: 146-148. 

Ming, X., G.H. Weber, J.W. Ayres, and W.E. Sandine. 1997. Bacteriocins applied to Food 

packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62: 413-415. 

Natrajan, N., and B.W. Sheldon. 2000. Inhibition of Salmonella on poultry skin using protein- 

and polysaccharide-based films containing a nisin formulation. J. Food Prot. 63: 1268-

1272. 

Nayak, B.S., and L.M. Pinto Pereira. 2006. Catharanthus roseus flower extract has wound-

healing activity in Sprague Dawley rats. BMC Complem. Alter. Med. 6: 41. 

Ouattara, B., R.E. Simard, G. Piette, A. Begin, and R.A. Holley. 2000. Inhibition of surface 

spoilage bacteria in processed meats by application of antimicrobial films prepared with 

chitosan. Int. J. Food Microbiol. 62: 139-148. 

http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Kuijpers%20AJ&ut=000073522600025&pos=1
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Engbers%20GHM&ut=000073522600025&pos=2
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=van%20Wachem%20PB&ut=000073522600025&pos=3
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Krijgsveld%20J&ut=000073522600025&pos=4
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Zaat%20SAJ&ut=000073522600025&pos=5
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Dankert%20J&ut=000073522600025&pos=6
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&doc=2&db_id=&SID=2CL9c673Caa9ceDJhh2&name=Feijen%20J&ut=000073522600025&pos=7
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=5&SID=2CL9c673Caa9ceDJhh2&page=1&doc=2


www.manaraa.com

 9

Salmaso S., N. Elvassore, A. Bertucco, A. Lante, and P. Caliceti. 2004. Nisin-loaded poly-l-

lactide nano-particles produced by CO2 anti-solvent precipitation for sustained 

antimicrobial activity. Int. J. Pharm. 287: 163-173. 

Scannell, A.G.M., C. Hill, R.P. Ross, S. Marx, W. Hartmeier, and K.E. Arendt. 2000. 

Development of bioactive food packaging materials using immobilized bacteriocins 

Lacticin 3147 and Nisaplin. Int. J. Food Microbiol. 60: 241–249. 

Taylor, T.M., P.M. Davidson, B.D. Bruce, and J. Weiss. 2005. Liposome nanocapsules in food 

science and agriculture. CRC Critical Rev. in Food Sci. and Nutr. 45:587-605.  

Taylor, T.M., B.D. Bruce, J. Weiss, and P.M. Davidson. 2008. Listeria monocytogenes and 

Escherichia coli O157:H7 inhibition in vitro by liposome-encapsulated nisin and EDTA. 

J. Food Safety 28: 183-197. 

 

 



www.manaraa.com

 10

 

Chapter 2 . Literature Review 



www.manaraa.com

 11

2.1. Characteristics of Zein 

Corn is one of the largest and most important food and industrial crops in America. Zein 

is the major storage protein of corn, representing 45-50% of proteins in corn (Shukla and 

Cheryan, 2001) and mainly distributed in the endosperm. Gorham (1821) first isolated zein from 

maize and named this protein “zeine”. Osborne (1891) classified zein as a prolamine, which is 

water-insoluble but soluble in aqueous alcohols. Some of the important works on zein were 

studied more than 100 years ago, such as extraction of zein (Osborne 1891, 1902) and uses of 

zein. Commercial zein is produced as the major protein co-products during corn processing. 

Commercial zein production dropped from a peak around 15 million pounds a year in the 

US in the late 1950s, to one million pounds per year in 1978 and has remained constant since 

then (Shukla and Cheryan, 2001). This drop was mainly due to the high cost of production and 

the emerging of cheaper alternatives in industrial applications (Lawton 2002). Recently, interest 

in zein utilization is growing again because of new demands for environmentally friendly 

materials. Zein is annually renewable and biodegradable and can be directly extracted from corn 

as one of the few natural cereal proteins in a relatively pure form. Potential applications of zein 

are applied in fiber, adhesive, coating, ceramic, ink, cosmetic, textile, chewing gum and 

biodegradable plastics (Shukla and Cheryan, 2001). Unfortunately, the relatively high cost 

(~$10-40 per kilogram, depending on purity) and the hygroscopic property of zein limited some 

applications. To achieve its full potential utilization, new purification methods should be 

established to greatly decrease the cost of manufacturing (Lawton 2002) and more potential 

applications should be investigated, which may eventually increase the needs of zein and thus 

further decrease its cost. 
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As a selected carrier material in developing antimicrobial delivery systems, the 

composition, solubility, structure, extraction condition, manufacture method, and industrial, 

health and research applications of zein are reviewed in this section to further understand the 

chemical and functional properties of zein.   

2.1.1. Composition and Solubility 

Zein is a mixture of different proteins with various molecular sizes, solubilities and 

amino acid sequences (McKinney 1958), with an average molecular weight of 44 kDa (Pomes 

1971). Based on the solubility and related structures, zein can be classified into four distinct 

types: α, β, γ, and δ (Coleman and Larkins 1999). α-Zein accounts for the largest amount (~70%) 

of corn zein (Thompson and Larkins 1989) and can be extracted using only aqueous alcohol, 

whereas β, γ, and δ-zeins need a reducing agent in the solvent during extraction. α-Zein has two 

major bands with molecular weights of 19 kDa and 22 kDa. Interestingly, Pomes (1971) 

suggested that β-zein could be disulfide-linked by α-zein molecules. Recent research indicated 

that β-zein fraction contains α-zeins and β, γ, and δ-zeins (Lawton 2002). 

Commercial zein is slightly yellow and exists in the form of fine powders. It is insoluble 

in water but soluble in alcohol. For example, zein is soluble in 85% aqueous isopropanol 

(McKinney 1958) or 55%-95% aqueous ethanol (Figure 2.1). (Figures and tables are located in 

the appendix to each chapter.)  As exemplified in Figure 2.1 for aqueous ethanol, ~55% and 

~95% are the critical concentrations of ethanol for the solubility of zein, and ~65% zein is the 

maximum concentration for the solubility in aqueous ethanol. Zein easily denatures in low 

concentrations of ethanol (Swallen 1941) and or at high zein concentrations even without heating. 

Low zein concentrations (<10% w/v) and high ethanol concentrations (>90% v/v) could prevent 

the denaturation effectively (Shukla and Cheryan 2001).  
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Kim and Xu (2008) showed that although zein was dissolved in 70%-90% aqueous 

ethanol, it still had different degrees of aggregation depending on the composition of the binary 

solvent mixture (ethanol and water); the minimum aggregation number of zein molecules and 

lowest viscosity of zein solution were observed in 89.7% ethanol solution. In addition, zein is 

soluble in high concentrations of urea, high concentrations of alkali (≥ pH 11) or anionic 

detergents (Shukla and Cheryan, 2001). 

Shukla and Cheryan (2001) suggested that water insolubility of zein was due to its amino 

acid composition, that has a high proportion of non-polar amino acid residues (>55 g/100g zein) 

and a deficiency in basic and acidic amino acids. Savich (1991) proposed that the hydrophobicity 

of zein was primarily due to the large molecular weight peptides besides the large amount of 

non-polar amino acids. On the other hand, the absence of some essential amino acids, such as 

lysine and tryptophan, leads to a poor nutrition value of zein, which limits its applications in 

human food products as a protein diet. 

2.1.2. Structure of Zein 

Argos et al. (1982) proposed a helical structure model that described the secondary 

structure of zein as homologous repeating units of primary sequences (Figure 2.2). Nine adjacent, 

topologically anti-parallel helices were joined by glutamine-rich “turns” or “loops” to clusters 

within a distorted cylinder. The polar and hydrophobic residues distributed along the helical 

surfaces developed intra- and intermolecular “hydrogen bonding” so that zein molecules could 

be arranged in planes (Figure 2.3). A ~35-60% helical content of zein was measured in 50-80% 

ethanol (Argos et al. 1982, Momany et al. 2006). 

Matsushima et al. (1997) further developed this helical structural model that proposed 

reduced-zeins as asymmetric particles with the length of about 13 nm and an elongated prism-
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like shape with an approximate axial ratio of 6:1 in the 70% (v/v) aqueous ethanol solution. 

Similarly, Bugs et al. (2004) proposed that zein had an elongated molecular structure of 

approximately a prolate ellipsoid composed of ribbons of folded α-helical segments with a 

length of about 14 nm. Recently, Momany et al. (2006) reviewed this molecular model and 

propesed a new three-dimensional (3D) structure for α-zein with a molecular weight of 19 kDa 

(Z19). α-Zein has a tendency to form coiled-coil structures resulting in α-helices with about four 

residues per turn in the central helical sections with the non-polar residue side chains formed a 

hydrophobic regime inside a triple super-helix. The nine helical segments of Z19 were modeled 

as three sets of three interacting coiled-coil helices with segments positioned end to end. The 

incorporation of natural carotenoids and/or lutein into the core of the triple-helical segments 

helps stabilize the configuration. 

Kim and Xu (2008) suggested a concept of structural inversion of zein in aqueous ethanol 

and 90% ethanol was regarded as the structural inversion point. Since zein has amphiphilic 

characteristics, micelle-like structures formed in lower than 90% ethanol have polar moieties 

oriented toward the solvent medium, whereas those formed in greater than 90% ethanol have 

non-polar moieties oriented toward the solvent medium.  

 

2.2. Manufacture of Zein 

The properties of zein are strongly dependent on the composition of zein in the resources 

and the processes of production. The manufacture of zein is thus important to understand how 

different processes affect the composition of commercial zein. Normally, zein production 

includes dissolving zein from raw materials, removal of fats and oils, extraction and/or 

elimination of pigments, extraction of zein, and recovery of zein (Shukla and Cheryan, 2001). 
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Raw materials, solvents used during extraction, purification methods, and recovery methods are 

important for zein manufacture.  

2.2.1. Raw Materials 

Raw dry-milled corn, corn gluten meal (CGM), or distillers dried grains with solubles 

(DDGS) are three common raw materials applied in zein production (Shukla and Cheryan, 2001). 

Zein content, in a native form without denaturation, in raw dry-milled corn is low (~4%). This 

limits the yield and increases the cost for extraction and recovery due to the increased cost from 

the solvent used. DDGS has a medium zein content (27-30%) when compared with CGM and 

raw corn, but DDGS is not an idealraw material for zein production due to low yields and low 

protein purities of extracts (Shukla and Cheryan, 2001). The most commonly used raw material 

in commercial zein production is CGM due to its low cost and high protein content (>60% on a 

dry basis, because almost all of the zein in the raw corn ends up in CGM; Shukla and Cheryan, 

2001).  

2.2.2. Extraction of Zein 

Extraction of zein from raw materials is the first step to manufacture zein. To achieve 

high extraction efficiency, a solvent with a high solubility of zein should be used. Since zein is a 

mixture of proteins with different solubilities, a mixture of non-aqueous solvents is possible to 

dissolve zein. Shukla and Cheryan (2001) suggested two types of non-aqueous solvents for zein 

extraction; one is a mixture of an organic compound with water, the other is a mixture of two 

anhydrous organic compounds. Ethanol (55-95%), isopropyl alcohol (IPA, 55-88%), ketones 

(e.g., methyl ethyl ketone, acetone), amide solvents (e.g., acetamide), high concentrations of salt 

(NaCl, KBr), and esters and glycols are the possible solvents for zein (Shukla and Cheryan 2001). 

Appropriate heating can cut solvent losses, reduce the extraction time, and increase the 
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extraction efficiency (Shukla and Cheryan 2001). Generally, the temperature for zein extraction 

is below the boiling point of the non-aqueous solvent. In addition, acidic and alkali treatments 

with HCl (pH<1) or NaOH (pH>11.5) and enzymatic hydrolysis are the possible methods to 

increase the solubility of zein in water so that aqueous solvents are still possible for zein 

extraction (Payne and Tyrpin 1990, Mannheim and Cheryan 1993). 

2.2.3. Commercial Production of Zein 

Current commercial zein production follow the processes (Figure 2.4) of Corn Products 

Corporation (CPC), which was the largest manufacturer of zein from 1939 to 1967 (Shukla and 

Cheryan 2001). Modification of CPC processes has also been used (Figure 2.5). In CPC 

processes, CGM is dispersed in 86%-88% IPA or 95% ethanol for extraction, adjusted for pH 

and heated to 50-60°C for 30 min to 2 h, followed by filtration or centrifugation of the mixture. 

The filtrate or supernatant (~6% of zein) is clarified by vacuum filtration, followed by extracting 

fats, oils, and colorants using toluol, hexane or benzene. Next, zein is precipitated by chilled 

water at low temperature, and the final product, light yellow powdered zein, is yielded by 

vacuum drying and grinding. 

Alkali treatment (pH 12) and re-extraction with 88% IPA are used in the modified CPC 

processes (Figure 2.5) (Swallen 1941). The modification improves the purity of zein and 

removes oil to approximately 2% in the zein product. The re-extraction process can reduce the 

oil content further to 1.4%. In the modified procedures, low temperature is used to protect 

against the denaturation or gelation of zein (Shukla and Cheryan 2001).  
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2.3. Applications of Zein 

The deficiency of lysine and tryptophan and water-insolubility of zein limit direct 

applications in food products (Shukla and Cheryan, 2001). As a result, major interests in zein 

have been in the utilization as an industrial polymer. Corn zein has been commonly used in the 

manufacture of paper coatings, plastics, adhesives, substitutes for shellac, laminated board, and 

solid color printing films, and in commercial coating formulations for shelled nuts, candies, and 

pharmaceutical tablets (Gennadios et al. 1997).  

2.3.1. Non-Food Applications 

The most extensive application of zein is the tablet-coating in the pharmaceutical industry. 

The unique solubility and excellent film-forming properties of zein, originating from its amino 

acid composition and molecular structure, are bases of commercial developments. About 75% of 

the annually produced 500 tons of zein was used in coating medicine tablets (Reiners et al., 

1973). One potential application for zein is the use as a carrier of controlled release for drugs 

(Hurtado-Lopez and Murdan 2005). Zein microspheres incorporated with drugs delay the release 

of drugs until the drug reaches the gastrointestinal tract. This application indicates the potential 

application of zein as carriers of food antimicrobial delivery systems. 

Other applications count for a small part of the total zein uses, including zein-based 

textile fibers, coating in cosmetic products, paper coatings for glossy magazine covers, toilet 

cleansing blocks, composite wound dressings, phonograph records, and artificial jewellery 

(Lawton 2002). As a low-valued protein, zein still has some special nutraceutical or 

pharmaceutical value in health-care application. Ariyoshi (1993) reported that enzyme-

hydrolyzed α-zein contained peptides inhibitory again angiotensin-converting enzyme (ACE).  
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2.3.2. Food Applications 

Application of zein in the food industry is the main interest in this study. It has been long 

known that zein can form tough, glossy, hydrophobic coatings on solid food surfaces or films 

that provide barriers to water, oxygen and microbes (Pol et al. 2002, Hargens-Madsen 1995, 

Herald et al. 1996, Torres et al. 1985). In recent years, the increasing concerns on 

environmentally friend disposals have rekindled research interests in biodegradable packaging. 

Zein, as a renewable and biodegradable biopolymer, has great potential for producing edible 

coatings and films to enhance food quality, food safety, and product shelflife. Coatings/films act 

as barriers against mass diffusion (moisture, gases, and volatiles) and serve as carriers for many 

food additives, including flavoring agents, antioxidants, vitamins, and colorants (Cagri et al. 

2004). 

Physically, corn zein coatings provide a good barrier to water vapor, oxygen, and 

diffusion of other chemicals. The hydrophobic nature of corn zein improves water vapor barrier 

properties of the laminated films (Pol et al. 2002). Application of corn zein as edible coatings or 

packaging films decreases lipid oxidation for cooked meat and cooked turkey (Hargens-Madsen, 

M. R. 1995, Herald et al. 1996). Zein coatings or films are also an acceptable edible diffusion 

barrier to control the distribution of surface sorbic acid (Torres et al. 1985). Park et al. (1994) 

reported that corn zein films had an effect on delaying ripening and color changes in tomatoes 

during storage, and the degree of color change was mainly dependent on the thickness of zein 

coating. Furthermore, zein films incorporated with antimicrobial agents have the ability to extend 

the lag phase and reduce the growth rate of microorganisms, which may extend shelf life and 

maintain product quality and safety (Han 2000).  
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Padgett et al. (1998) studied the inhibitory effect of lysozyme, nisin, and EDTA 

incorporated in corn zein film produced by heat-press and casting. The cast films exhibited larger 

inhibition zones compared to the heat-press films against Lactorbacillus plantarum. The cast 

corn zein films had a lower nisin diffusivity, higher nisin retention, and higher activation energy 

for nisin diffusion than heat-pressed corn zein films, wheat gluten cast films, and heat-pressed 

wheat gluten films (Teerakarn et al. 2002). Corn zein films incorporated with nisin alone and in 

combination with lauric acid affected the water permeability and inhibition of bacterial growth 

(Padgett et al. 2000). Del Nobile et al. (2008) suggested that the studied antimicrobial films 

could be advantageously used for extending the shelf life of packed foods. In their investigation, 

zein films loaded with 20% and 35% thymol inhibited the growth of the selected spoilage food 

borne microorganisms (cells and spores of Bacillus cereus, Candida lusitaniae and Pseudomonas 

spp.) during the entire observation period; whereas films loaded with 5% and 10% thymol only 

slowed down the growth cycles of the tested microbes. Moreover, the thymol concentration did 

not affect the thymol diffusion coefficient to a significant extent, which means that zein matrix 

had similar release properties for thymol at different concentrations.  

With the growing interests in utilizing unique properties of zein as an industrial and 

specialty polymer, more technologies may be developed. The potential application of producing 

zein particles with controlled release of antimicrobials was investigated in this study. 

2.4. Properties and Functionality of Lysozyme 

Lysozyme (EC 3.2.1.17) is widely present in tears, saliva, nasal secretion, mucus, milk of 

humans and other animals, and plants (Johnson and Larson 2004, Safarik et al. 2007). It was 

discovered by Alexander Fleming in 1921 (Fleming 1922). The increased research interest in 

lysozyme is because hen egg lysozyme is one of the few naturally-occurring antimicrobials 
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approved as GRAS by FDA for use in foods (Federal Register 1998). In addition, the majority of 

the lysozyme used both in research and in food products is purified from hen egg white (type C 

lysozyme) due to the relative ease of purification, low toxicity, low effective usage levels and 

low interference on sensory qualities of foods (Johnson and Larson 2004). Lysozyme can be 

added directly into food products to inhibit the growth of undesired bacteria in traditional food 

applications and be incorporated into plastic (e.g., crosslinked polyvinylalcohol (PVOH)) or 

biopolymer edible films (e.g., whey protein films and chitosan films) to produce antimicrobial 

packaging materials as emerging food applications (Buonocore et al. 2003, Min et al. 2005, and 

Park et al. 2004).  

2.4.1. Physicochemical Properties of Lysozyme 

Lysozyme is a single polypeptide chain composed of 129 amino acids (Figure 2.6) with a 

molecular weight of ~ 14.4 kDa (Johnson and Larson 2004). It is amphiphilic, as a protein, 

having embedded hydrophobic amino acids and outer hydrophilic amino acids. Four pairs of 

cysteines (amino acids No. 6 and 127, 30 and 115, 64 and 80, 76 and 94) form 4 disulfide bonds, 

which gives lysozyme a compact globular tertiary structure with a long cleft on the protein 

surface. This structure is responsible for the function of lysozyme. Johnson and Larson (2004) 

mentioned that if more than 2 of the 4 disulfide bonds are disrupted, lysozyme would lose its 

bioactivity, i.e., the cell-lysing ability.  

2.4.2. Antimicrobial Mechanism of Lysozyme 

Lysozyme has a broad spectrum of antimicrobial activities against Gram-positive bacteria 

and fungi such as Bacillus stearothermophilus, Micrococcus spp., Clostridium tyrobutyricum, 

and Listeria monocytogenes (Johnson and Larson 2004). The antibacterial property comes from 

catalyzing hydrolysis of β-1, 4-glycosidic bonds between the C-1 residue of N-acetylmuramic 
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acid and the C-4 residue on N-acetylglucosamine of bacterial peptidoglycan in the cell 

membrane (Johnson and Larson, 2004), which increases the bacteria’s permeability and causes 

the bacteria to burst. The cell membranes in Gram-positive bacteria contain around 40-90% of 

peptidoglycan, but only 10% for Gram-negative bacteria (Islam et al. 2006). Thus, this enzyme 

has broad lysis effects against Gram-positive bacterial but seldom inhibits Gram-negative 

bacteria. However, with EDTA, E. coli could be sensitive to lysozyme. The use of lysozyme in 

combination with nisin has synergic effects in inhibition property, which also broadens the 

spectrum of antimicrobial activity for lysozyme (Johnson and Larson 2004). 

The antimicrobial mechanism has been also related with the physical structure of 

lysozyme. Philips (Blake et al. 1965) determined lysozyme's structure using x-ray 

crystallography and provided an explanation for how the enzyme facilitates a chemical reaction 

due to a substrate distortion in the physical structures. Recently, Vocadlo et al. (2001) revised the 

mechanism of the hydrolysis for lysozyme proposed by Philips and formulated a general 

catalytic mechanism for all enzymes containing β-glycosidase that includes substrate distortion, 

formation of a covalent glycosyl-enzyme intermediate (Asp52 of lysozyme), and the 

electrophilic migration of C1 along the reaction coordinate. 

 

2.5. Techniques of Developing Particulate Antimicrobial Delivery Systems  

Investigation of delivery systems with sustained release of drug proteins or food 

antimicrobials has been greatly advanced in recent years due to the potential benefits of sustained 

release of the encapsulated compounds. The common methods of obtaining sustained release are 

to entrap, coat or microencapsulate antimicrobials into special food biopolymers to develop 

http://en.wikipedia.org/wiki/Enzymes
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delivery systems, such as films directly coated with antimicrobials or microcapsules (Gouin 

2004).  

Particulate delivery systems with controlled release have mainly been studied and 

developed for pharmaceutical applications using techniques such as emulsification, phase 

separation, coacervation, liposome entrapment and freeze drying (Bezemer et al. 2000, Gibbs et 

al. 1999, Hurtado-Lopez and Murdan 2005, 2006, Liu et al. 2004, Parris et al. 2005). Bezemer et 

al. (2000) encapsulated lysozyme in poly(ethylene glycol) / poly(butylene terephthalate) using a 

water-in-oil-in-water (w/o/w) emulsion method to prepare bilayer microspheres, followed by 

filtration and freeze-drying. The system showed zero-order release kinetics of the encapsulated 

lysozyme. Liu et al. (2004) investigated a novel microsphere drug delivery system of ivermectin 

using hydrophobic protein corn zein by the phase separation method. A coacervation method was 

applied to study zein microspheres as drug/antigen/vaccine carriers (Hurtado-Lopez and Murdan 

2005, 2006). These methods are efficient but expensive due to a set of processes, including 

emulsification, evaporation of alcohol, concentration by centrifugation or filtration, and spray or 

fluidized bed drying (Gibbs et al. 1999).  

Meanwhile, techniques with fewer steps were also studied for producing delivery systems. 

Nanoemulsions of essential oils were produced by the solvent attrition technique, using high 

speed homogenization, to encapsulate three essential oils (oregano, red thyme, and cassia) into 

zein nanocapsules (Parris et al. 2005). Salmaso et al. (2004) microencapsulated nisin in poly(L-

lactide) using a supercritical anti-solvent technique (SAS). The encapsulated nisin showed 

sustained release over 45 days. Good miscibility of supercritical CO2 and co-solvent is important 

for the particle synthesis using the SAS technique. The simple “one-step” , low temperature 

process makes SAS attractive for food applications. 
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The above solvent attrition, spray drying and SAS techniques are feasible for 

microencapsulating antimicrobials in biopolymers. Development of these techniques for 

manufacturing antimicrobial delivery systems should also consider the properties of carrier 

materials and antimicrobials, in addition to processing conditions. This work utilized zein as the 

carrier material and lysozyme as an antimicrobial to study the feasibilities of the above three 

processes. 
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Figure 2. 1. Ternary phase diagram showing the solubility of zein in binary solvent 
mixtures of ethanol and water. 
Adapted form Shukla and Cheryan (2001). 

 

 

Figure 2. 2. A possible nine-helical zein protein structural model shown in projection 
with the helical axes orthogonal to the figure plane. 
The hydrogen-bonding polar residue segments are shown as small circles. Adapted from Argos 
et al. (1982) © the American Society for Biochemistry and Molecular Biology. 

http://www.jbc.org/misc/terms.shtml
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Figure 2. 3. A possible model for the arrangement of zein proteins within a plane as well 
for the stacking of molecular planes. 
The glutamine residues (Q) would allow hydrogen bond interactions among molecules in 
neighboring planes. Adapted from Argos et al. (1982) © the American Society for Biochemistry 
and Molecular Biology. 

 

 

Figure 2. 4. Corn Products Corporation (CPC) processes for production of zein from 
corn gluten meal. 
Adapted from Swallen. (1941). 

http://www.jbc.org/misc/terms.shtml
http://www.jbc.org/misc/terms.shtml
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Figure 2. 5. Nutrilite processes for production of zein from corn gluten meal. 
Adapted from Carter and Reck (1970). 

 

 
Figure 2. 6. Sequence of amino-acid residues in hen egg white lysozyme. 

Adapted from Blake et al. (1965).  
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Chapter 3 . Production of Zein Nanoparticles as Delivery 

Systems by Solvent Attrition 
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3.1. Abstract 

The first objective of this work was to explore processing variables that affect the nano- 

or microparticle production using zein during the process of solvent attrition. The second 

objective was to encapsulate lysozyme in zein particles, a water-soluble antimicrobial, and 

evaluate in vitro lysozyme release kinetics. Because eventually, these nano-delivery systems will 

be incorporated in consumer products that have other ingredients, such as thickening agents, our 

third objective was then to study rheological properties of a model system containing 

carboxymethylcellulose (CMC) solutions with dispersed nanoparticles. The process was based 

on dissolving zein in a stock solution of 55-90% aqueous ethanol, which was then subjected to 

shearing in deionized water using a high speed blender. The size and morphology of zein 

nanoparticles were significantly affected by the variables during synthesis, including shear rate, 

ethanol concentration and zein concentration in stock solutions. Both separated or connected 

particles were observed due to two competing processes, fragmentation of stock solution droplets 

and solidification of zein. Diameters of zein nanoparticles were typically between 100-200 nm. 

The addition of 1% zein nanoparticles into 0.5% carboxymethylcellulose solutions (adjusted to 

pH 3 to 9) increased the viscosities of the polymer solutions. Viscosities increased at higher pHs. 

Lysozyme was demonstrated to be encapsulated in zein nanoparticles by the solvent attrition 

process, with sustained release at pH 7 and 8 but no sustained release at lower pHs of 2 to 6. 

Under basic conditions, release was much less and slower due to greater electrostatic and 

hydrophobic attractions when the pH was closer to the pI of lysozyme (10.5-11.0). The results 

showed that solvent attrition was a simple and scalable process to manufacture delivery systems 

of lysozyme. The materials used in this work are generally-recognized-as-safe and may find 

unique applications for food systems.  
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3.2. Introduction 

The promise of nanometer-sized food delivery systems has been recently discussed 

(Weiss et al. 2006). Most studies thus far have utilized colloid-based structures, such as 

liposomes and microemulsions (Were et al. 2004, Gaysinsky et al. 2005a, Were et al. 2003, 

Gaysinsky et al. 2005b, Taylor et al. 2005). Much work is needed to develop scalable processes 

using low-cost, abundant food ingredients as carrier materials, e.g., food biopolymers. 

One practical application of nanodelivery systems involves their use in beverages 

because of the advantages of enhanced dispersibility. To maintain the delivery functions during 

the long shelflife of beverages (weeks or months), it is preferable that delivery systems can 

sustain the structure integrity. The stability of delivery systems may be achieved by application 

of water-insoluble food biopolymers or self-organized structures that are stable in aqueous media 

(for example, microemulsions). One such system that could function successfully would be zein. 

Zein (corn prolamines) is a group of water-insoluble but alcohol-soluble storage proteins that are 

predominantly present in the endosperm of corn kernels  (Shukla and Cheryan 2001). Further, 

zein is considered odorless and tasteless (Park 1999) and thus may potentially mask undesirable 

aroma and taste of some bioactive compounds.  

Zein is produced in large quantities - more than 7000 tons per year before 1970s and 

~500 tons in 2001; fluctuation was dependent largely on the demand (Shukla and Cheryan 2001). 

Commercial zein is currently separated from corn gluten meal, a co-product of corn wet milling, 

and is a mixture of at least four types of proteins: α-, β-, γ-, and δ- zein, each with a different 

amino acid sequence, molecular weight, and solubility (Shukla and Cheryan 2001, Zhu et al. 

2007). Although the majority of zein is the α- and β-zein (Shukla and Cheryan 2001), the 
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variation in proportions of different types of zein is expected to be a function of raw materials 

and conditions during purification. Highly-purified zein is currently relatively expensive - $10-

40 per kg or ~$5-20 per pound, depending on purity (Shukla and Cheryan 2001). Improvement 

in separation technology or use of less pure zein (assuming the controlled delivery of bioactive 

compounds can be achieved) can further reduce the cost of zein. Further, recovering zein as a co-

product from the ethanol industry can decrease the cost of zein to $4.4 per kg or ~$2 per pound 

with ~90% purity (Kale et al. 2007). Approximately 13,000 tons of zein could be recovered in 

the production of 50 million gallons of ethanol annually (Kale et al. 2007), which also increases 

the profitability of the biorefinery (Shukla and Cheryan 2001, Kale et al. 2007, Xu et al. 2007).  

Several studies have used zein to produce edible capsules (Liu et al. 2005, Hurtado-

Lopez and Murdan 2006) or films (Dawson et al. 2003, Wang et al. 2005). Controlled release of 

heparin, a water-soluble drug, was observed in vitro over 20 days from the films made of 

microspheres with encapsulated heparin (Wang et al. 2005). To prepare microspheres, zein was 

first dissolved in aqueous ethanol and then water was added to precipitate zein and drug 

simultaneously by coacervation (Liu et al. 2005, Hurtado-Lopez and Murdan 2006). In vitro 

release of a water-soluble drug, ivermectin was reported over 9 days from the produced 

microspheres (Liu et al. 2005). These studies suggested the potential of developing delivery 

systems of water-soluble antimicrobials using zein as a carrier biopolymer. 

 In the present study, we used a process that manipulated the solubility characteristics of 

zein in different concentrations of ethanol which was first reported for pharmaceutical coatings 

application (Oshlack et al. 1994, O'Donnell et al. 1997). Nanoparticles were produced by 

shearing zein, dissolved in a 70:30 ethanol/water mixture, into bulk water phase. Nanoparticle 

production was based on the solvent-attrition mechanism in which the ethanol diffuses out of the 
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sheared droplets into the continuous phase water during shearing. The process has been used to 

microencapsulate spice essential oils, oregano, red thyme, and cassia (Parris et al. 2004). This 

technology is very simple and scalable and may be used to microencapsulate a variety of 

compounds.  

 The first objective of this work was to explore processing variables that affect the particle 

production during solvent-attrition. The second objective was to encapsulate lysozyme, a water-

soluble antimicrobial, and evaluate in vitro lysozyme release kinetics. Because eventually, these 

nano-delivery systems will be incorporated in consumer products that have other ingredients 

such as thickening agents, our third objective was then to study rheological properties of a model 

system containing carboxymethylcellulose (CMC) solutions with dispersed nanoparticles. The 

CMC was used because the hydrocolloid is extensively used in food and non-food products for 

various functions such as thickening and stabilizing agents (BeMiller and Whistler 1996). 

 

3.3. Materials and Methods 

3.3.1. Materials 

Purified zein and ethanol (200 proof) were purchased from Acros Organics (Morris 

Plains, NJ). The CMC sample (Ticalose® CMC 2500 Powder) was a free sample from TIC Gums, 

Inc. (Belcamp, MD). Lyophilized hen egg white lysozyme (product # L-6876) and the test 

microorganism Micrococcus lysodeikticus were purchased from Sigma-Aldrich (St. Louis, MO). 

Other chemicals were from Fisher Scientific (Pittsburgh, PA). 

3.3.2. Protocol of Producing Nanoparticles 

The protocol followed that of a literature method (Parris et al. 2005), with slight 

modification. Stock solutions were prepared by dissolving different amounts of zein in 15 ml 55-
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90% ethanol (rest being deionized water). The stock solution was sheared into 40 ml of de-

ionized water for 2 min while a high speed blender (Cyclone I.Q.2, The VirTis Compary, Inc., 

Gardiner, NY) was running at a fixed speed from 5,000 to 15,000 rpm. Particle size distributions 

of fresh dispersions were measured by dynamic light scattering (DLS) (model ZetaPALS, 

Brookhaven Instruments Corporation, Brookhaven, NY). All operations were at room 

temperature. Dispersions were freeze-dried to prepare the powder-form nanoparticles. Powdered 

samples were stored at -20 °C until for morphological or rheological tests.  

3.3.3. Scanning Electron Microscopy (SEM) 

The surface morphology of microparticles was imaged using a LEO 1525 microscope 

(LEO Electron Microscopy, Oberkochen, Germany). The microparticles were loosely attached 

onto a black adhesive tape mounted on a stainless steel stub and sputter-coated with a gold layer 

of ~5 nm thickness to prevent the charging on protein samples. Selected images were also 

analyzed for particle sizes using the ImageJ software available from the National Institute of 

Health (Bethesda, MD). 

3.3.4. Production of Zein Nanoparticles with Encapsulated Lysozyme  

A stock solution was prepared by dissolving 5 g of zein and 0.015 g lysozyme in 30 mL 

60% ethanol. The stock solution was then blended into 300 mL deionized water at 10,000 rpm 

for 2 min. The dispersion was immediately placed in a -40 °C freezer and then freeze-dried 

(Model 12EL, The Virtis Company, Inc., Gardiner, NY). Particles were stored in -20°C. 

3.3.5. Evaluation of in vitro Release Kinetics 

To evaluate lysozyme in vitro release kinetics, 27 mg of lysozyme-loaded zein particles 

were dispersed in a microcentrifuge tube filled with 1.5 mL of a 66 mM potassium phosphate 
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buffer (adjusted to a pH between 2 and 8 with 1 N HCl or 1 N KOH, respectively). The 

dispersions were continuously mixed using an end-to-end shaker (Lab Industries Inc., Berkeley, 

CA) at room temperature. At a preset time point, the dispersions were centrifuged at 5,000 × g 

for 5 min (MiniSpin Personal, Eppendorf, Westbury, NY). One mL of each supernatant was 

transferred for measurement of the released lysozyme using a Sigma method (for product L-

6876). The remainder sample was supplemented with 1.0 mL of the fresh corresponding buffer, 

redispersed and mixed for continued release studies. The total amount of lysozyme in unit mass 

of powders was measured by dissolving 27 mg of powders in 15 mL 80% ethanol that dissolved 

both zein and lysozyme completely. 

Calculation of accumulative lysozyme release was as follows: 

Let the lysozyme volumetric concentration (U/ml) at the first sampling time, t1 to be a1, the 

accumulative release at time t1 is: 

%100
 5.1

(%) 
o

1
t1 ×=

U
a

R     (2) 

where Uo is the total lysozyme units included in the dispersion before release tests, and the prefix 

1.5 before a1 is the total volume of dispersion. 

After removing 1 mL of supernatant, there are 0.5 a1 units of lysozyme due to the release after 

time t1, which carries to the second sampling at time t2. Similarly, if the volumetric concentration 

of supernatant from the second sampling is a2 (U/ml), the total lysozyme released up to this point 

is a1 + 1.5 a2, which gives an accumulative release at time t2: 
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Therefore, at the ith sampling, the accumulative release is: 
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3.3.6. Measurement of Lysozyme Activity 

The activity of lysozyme was measured according to the protocol provided by Sigma for 

hen egg white lysozyme (product number L-6876). The test microorganism was Micrococcus 

lysodiekticus, and measurements were based on the reduction rate of absorbance at 450 nm due 

to the lysis of cells by lysozyme at pH 6.24 and 25 °C. The lysis kinetics was measured using a 

UV/Vis spectrophotometer (model Biomate 5, Thermo Electron Corporation, Woburn, MA). 

3.3.7. Rheological Measurements 

3.3.7.1. Sample preparation  

Nanoparticles were prepared using a stock solution of 1 g zein dissolved in 15 mL 85% 

ethanol, emulsified into 40 mL deionized water at 10,000 rpm and freeze-dried as above. The 

CMC powder and zein nanoparticles were redispersed in deionized water and stirred for 16 h 

overnight to hydrate at room temperature. The dispersion was then adjusted to pH 3, 5, 7, or 9 

with 1 N HCl or 1 N NaOH. The final concentration of CMC was 0.5% (w/v) and that of zein 

was 1% (w/v). Controls were the 0.5% (w/v) CMC solutions without zein nanoparticles. 

3.3.7.2. Rheological tests  

Each sample was measured in triplicate and the averages from three tests were reported. 

Tests were performed with an AR2000 rheometer (TA Instruments, New Castle, DE) using a 

Searle set up (bob OD = 28 mm; cup ID = 30 mm). After positioning the bob and removing the 

excess sample, a layer of mineral oil was applied onto the top of the sample to minimize the 

moisture loss during measurements. Viscosity tests followed two subsequent steps: (1) a shear 
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rate ramp from 1 to 1000 s-1 at 20 °C and (2) a heating ramp from 20 to 90 °C at 2 °C/min, with a 

shear rate of 1 s-1.  

 

3.4. Results  

3.4.1. Effect of Blending Speed  

The stock solution with 85% ethanol was used to study the effect of blending speed 

during particle production. Diameters of particles in fresh dispersions were not greatly different 

at different blending speeds based on DLS (Figure 3.1.). SEM images showed the formation of 

spherical nanoparticles (Figure 3.2). The measured diameters based on SEM images showed a 

decreased diameter at a higher blending speed (Figure 3.1.). Because the lowest speed (5000 rpm) 

enabled the production of spherical nanoparticles, the following studies were performed at this 

shearing speed. 

3.4.2. Effect of Ethanol Concentration 

Results from DLS showed the smallest diameter of zein nanoparticles when the ethanol 

concentration in stock solution was 80% (Figure 3.3). With an increased ethanol concentration 

from 55% to 80%, the hydrodynamic diameter measured from DLS decreases; the opposite was 

true when the ethanol concentration was increased from 80% to 90%. SEM results showed that 

not all particles are separated for the 60% and 90% ethanol treatments (Figure 3.4); particles are 

connected more extensively for the 90% ethanol treatment. Estimations of particle size based on 

diameters of identifiable partial spherical structures showed the opposite trend to the data from 

DLS (Figure 3.3), although the numbers are of the same magnitude. 
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3.4.3. Effect of Zein Concentration 

Dissolving a smaller amount of zein in stock solutions resulted in smaller diameters 

based on DLS (Figure 3.5). However, more than 2 g of zein dissolving into the stock solution did 

not enable the formation of a homogenous dispersion because agglomerates of unemulsified zein 

were visibly observed during experiments. 

3.4.4. Lysozyme in vitro Release Kinetics 

In vitro release kinetics of lysozyme is plotted in Figure 3.6. At pH 2-6, the release 

reached equilibrium in 30 min. At pH 7, gradual release was observed up to 24 h. Gradual 

release of lysozyme was also observed at pH 8, but a much lesser amount of lysozyme was 

released when compared to other pH conditions. 

3.4.5. Rheological Properties 

Shear rate ramp results are plotted in Figure 3.7. For CMC solutions without 

nanoparticles, viscosity increased monotonically with pH until pH 7, further increasing the pH to 

9 reduced the viscosity. Addition of zein nanoparticles into CMC solutions further increased the 

viscosity, and the degree of increase was more apparent at a higher pH condition. In all samples, 

shear-thinning was observed. 

When heating the CMC solutions (samples without zein nanoparticles), the viscosity 

decreases with temperature except for the sample adjusted to pH 3 at a temperature above ca. 

80°C (Figure 3.8). The addition of zein nanoparticles did not change the overall characteristics of 

CMC solutions, except for the sample adjusted to pH 7 that showed fluctuations above a 

temperature of approximately 35 °C, although the overall trend showed a decrease with 

temperature. 
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3.5. Discussion 

3.5.1. Particle Synthesis 

 The principle of solvent attrition during synthesizing zein nanoparticles is presented in 

Figure 3.9, similar to a “liquid-liquid dispersion” technique (Alargova et al. 2006, Alargova et al. 

2004). The zein sample in this work is soluble at an ethanol concentration range of ~55-90% 

ethanol (v/v), based on visual absence of particulates. When a stock solution of zein is sheared 

into bulk deionized water, the stock solution is emulsified to smaller droplets. Due to the 

excellent miscibility of ethanol and water, ethanol in the emulsified droplets partitions into the 

bulk water – solvent attrition. When the ethanol concentration in the emulsified droplets 

decreases to a level low enough, zein becomes insoluble and precipitates to form nanoparticles.  

 During shearing, there are two competing mechanisms. The first one is the breakup of the 

stock solution droplets by the shear force applied. The second one is the simultaneous 

solidification of zein during the solvent attrition. If the time scale for breakup is shorter than zein 

solidification, individual zein nanoparticles may be formed. However, if zein solidifies before 

breakup of droplets, connected spherical particles or even nonspherical structures may be present 

(Figure 3.9). The observations in Figures 3.1-3.5 are qualitatively discussed below. 

3.5.1.1. Effect of Blending Speed 

Theoretically, stock solutions are sheared to smaller droplets at a higher blending speed 

that should correspond to smaller particles after zein solidification. The trend was observed 

based on SEM images (Figures 3.1 and 3.2). However, DLS results showed no difference in 

diameters for samples produced at three blending speeds (Figure 3.1.).  



www.manaraa.com

 44

3.5.1.2. Effect of Ethanol Concentration 

The stock solution with 85% ethanol produced individual spherical nanoparticles (Figure 

3.2A). When the ethanol was lowered to 60% or increased to 90%, the majority of spheres 

seemed to be “bonded” to each other (Figure 3.4). The observations can be explained by the two 

competing processes during zein precipitation into particles. On one hand, the stock solution is 

being sheared and extended, facilitating the breakup of droplets and thus formation of individual 

particles. On the other hand, ethanol diffuses from the emulsified droplets to the continuous 

medium, and this lowers the overall ethanol concentration to a limit where zein starts to 

precipitate. At a lower ethanol concentration, the time scale for zein precipitation may be shorter 

than that of droplet breakup; zein precipitates prior to the complete droplet breakup, generating 

predominantly spherical structures with some bonding structures (Figure 3.4A). At 90% ethanol, 

the time scale for zein precipitation is relatively long because it takes a longer time for ethanol 

diffusing out of the droplets (to decrease ethanol concentration to induce zein solidification); this 

may have enabled the coalescence of initially broken-up “soft” particles whose ethanol 

concentration was still sufficiently high to maintain zein unsolidified. The “partially coalesced” 

stock solution droplets eventually precipitated into many particles with irregular structures, as 

seen in Figure 3.4B. At intermediate ethanol concentrations, the balance of two time scales may 

correspond to conditions for formation of separated spherical particles (Figure 3.2A). 

Because DLS measures the hydrodynamic radius from the overall structures, the 

interconnected structures at lower and higher ends of ethanol concentrations may have resulted 

in larger measured particle sizes (Figure 3.3). Smaller spherical diameters measured from the 

SEM image of the 60% ethanol sample (Figures 3.3 and 3.4A) may have been caused by the 

faster solidification of zein, which may be true until an ethanol concentration of 80%. Above 
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80% ethanol, “partial coalescence” and breakup of stock solution droplets occur simultaneously; 

solvent attrition gradually reduces ethanol concentration in the “partially coalesced” droplets. 

Eventually, the “spherical structures” formed are smaller in characteristic “diameters” because of 

the longer shearing time (before zein eventually loses solubility) allowed for 85% and 90% 

ethanol treatments. 

Although connected structures of zein nanoparticles were observed at both ends of 

ethanol concentrations, it however should be noted that plasticizers may be used to manipulate 

the solidification of zein during solvent attrition (O'Donnell et al. 1997). This will be our future 

research topic. 

3.5.1.3. Effect of Zein Concentration  

A monotonic increase of particle sizes measured from DLS corresponds to an increase in 

zein concentration or solution viscosity (Figure 3.5). When the zein concentration increases to 

above a certain value (e.g., the sample with 2 g in 15 mL 80% ethanol), the viscosity of stock 

solution generates a stronger resistance for deformation, leading to larger droplets and thus 

particle sizes (Dixon et al. 1993). A higher zein concentration also corresponds to a shorter time 

scale for polymer solidification because of the larger amount of nuclei created for growth of 

precipitates (Kashchiev and van Rosmalen 2003). Therefore, at high zein concentrations, 

incomplete emulsification was observed (Figure 3.5). 

3.5.2. In vitro release Kinetics of Lysozyme 

The dependence of release characteristics on pH (Figure 3.6) may be explained by 

molecular interactions between zein and encapsulated lysozyme. The isoelectric point (pI) of 

zein is approximately 6.8 (Cabra et al. 2005); therefore zein is positively charged at pH 2-6 and 

negatively charged at pH 7 and 8. On the other hand, lysozyme has a pI of 10.5-11.0 
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(Cunningham et al. 1991) and is always positively charged at pH 2-8. Therefore, the electrostatic 

interactions are repulsive at pH 2-6 (both zein and lysozyme are positively charged) and 

attractive at pH 7 and 8 (zein and lysozyme are oppositely charged). In addition, because zein is 

hydrophobic (water insoluble), hydrophobic interactions should theoretically become stronger at 

a higher pH closer to the pI of lysozyme. Summation of these two forces gives overall stronger 

attractive forces at a higher pH, which corresponds to (1) a quick release of lysozyme at pH 2-6, 

(2) gradual release of lysozyme at pH 7 and 8, and (3) a smaller amount of lysozyme release at a 

smaller rate (a smaller increase at a same release time period) at pH 8 than at pH 7. 

3.5.3. Rheological Properties 

For CMC solutions without zein nanoparticles, the monotonic increase in viscosity at a 

higher pH condition until pH 7 (Figure 3.7) may be explained by a larger hydrodynamic radius 

of polyelectrolytes. The carboxymethyl group has the pKa of 3.65 (King and Smibert, 1963). The 

CMC is thus more negatively charged at a higher pH and has a bigger hydrodynamic radius. A 

bigger hydrodynamic radius of polymers corresponds to a higher solution viscosity because of 

the higher degree of polymer chain entanglement (Morris et al. 1981). However, when 

polyelectrolytes are extensively charged (at pH 9), polymer chains become rigid, that may have 

accounted for the reduced viscosity when pH was increased from 7 to 9 (Figure 3.7). A similar 

trend (increase in viscosity from pH 4 to pH 8, followed by a decrease at higher pH values) was 

also observed for hydrophobically modified CMC (Cohen-Stuart et al. 1998). 

The increase of CMC solution viscosities due to the addition of zein nanoparticles is 

expected, as the case of dispersing colloidal particles (fillers) into polymer solutions (Gupta 

2000). A greater degree of increase in viscosity by zein nanoparticles at a higher pH may be 

explained by the effective diameters of zein nanoparticles at different pH values. Zein is soluble 
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in highly alkaline solutions (pH ≥ 11) (Shukla and Cheryan 2001). At a higher pH, the 

interactions between zein nanoparticles and water should be strengthened (although may still be 

insoluble at the tested pH range of 3-9), which may increase the effective diameter of zein 

nanoparticles in solutions. 

Finally, the abnormity of viscosity during heating of the pH 7 sample with added zein 

nanoparticles may be caused by strengthened hydrophobic interactions and reduced electrostatic 

repulsion because the pH is close to the pI of zein, 6.8 (Cabra et al. 2005). The hydrophobic 

interactions between zein nanoparticles however may not have been strong enough to induce 

aggregation but have resulted in weak flocculation. The weakly flocculated zein nanoparticles 

may have been instantaneously dissociated by the continuous shear during heating, which caused 

the abnormally fluctuating viscosities in Figure 3.8. 

 

3.6. Conclusions 

Solvent attrition was studied for the formation of zein nanoparticles with diameters 

between 100-200 nm, and used to encapsulate water-soluble antimicrobial lysozyme. The size 

and morphology of zein nanoparticles were significantly affected by the variables during 

synthesis. Separated or connected particles were both observed due to two competing processes: 

breakup of stock solution droplets and solidification of zein. The encapsulated lysozyme showed 

in vitro sustained release at pH 7 and 8 up to 24 h, but a complete release within 30 min at pH 2-

6. The pH-dependent release profiles were affected by the type and strength of electrostatic 

interactions, as well as hydrophobic interactions. When zein nanoparticles were dispersed in 

CMC solutions at different pH conditions, the viscosities of dispersions increased monotonically 

with pH, possibly due to an increased effective diameter of nanoparticles. This work 
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demonstrated that solvent attrition is a simple and scalable process that may find applications to 

develop delivery systems of many bioactive compounds, including antimicrobials. However, the 

effects of these potential delivery systems on physical properties of eventual food products need 

to be examined. 
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Figure 3. 1. Effect of blending speed on the sizes of zein nanoparticles prepared from a 
stock solution with 1 g zein dissolved in 15 ml of a 85: 15 (v:v) ethanol : deionized water 
mixture, blended into 40 ml deionized water. 
Results of dynamic light scattering are surface average diameters (D3,2) from 10 runs and those 
of SEM are estimates from sphere diameters based on SEM images. Error bars are 95% 
confidence intervals.  
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Figure 3. 2. SEM images of zein nanoparticles prepared with a stock solution with 1 g 
zein dissolved in 15 ml of a mixture of 85: 15 (v:v) ethanol : deionized water, blended into 40 ml 
deionized water at 5,000 (A), 10,000 (B), or 15,000 rpm (C). 
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Figure 3. 3. Effect of ethanol concentration in stock solutions on the sizes of zein 
nanoparticles prepared from stock solutions of 1 g zein dissolved in 15 mL of different ethanol 
concentrations, blended at 5,000 rpm into 40 mL deionized water. 
Results of dynamic light scattering are surface average diameters (D3,2) from 10 runs and those 
of SEM are estimates from sphere diameters based on SEM images. Error bars are 95% 
confidence intervals. 
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Figure 3. 4. SEM images of zein nanoparticles prepared with a stock solution with 1 g 

zein dissolved in 15 ml 60% v/v ethanol (A) or 90% ethanol (B), blended into 40 ml deionized 
water at 5,000 rpm. 
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Figure 3. 5. Effect of zein concentration in stock solutions on the sizes of zein 
nanoparticles, prepared from stock solutions with different amounts of zein dissolved in 15 mL 
80% ethanol, blended into 40 mL deionized water at 5,000 rpm. 
Results of dynamic light scattering are surface average diameters (D3,2) from 10 runs. Error bars 
are 95% confidence intervals. 
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Figure 3. 6. Lysozyme in vitro release kinetics from zein nanocapsules in buffers at pH 
2-8 at room temperature. 
Capsules were prepared by blending a stock solution (5 g of zein and 0.015 g lysozyme in 30 mL 
60% ethanol) into 300 mL deionized water at 10,000 rpm for 2 min. Error bars are 95% 
confidence intervals. 
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Figure 3. 7. Comparison of viscosities of 0.5% (w/v) CMC solutions at 20°C before and 
after addition of 1% (w/v) zein nanoparticles, adjusted to pH 3-9. 
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Figure 3. 8. Comparison of viscosities of 0.5% (w/v) CMC solutions before and after 

addition of 1% (w/v) zein nanoparticles, adjusted to different pH values, during heating from 20 
to 90°C at a heating rate of 2 °C/min. 
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Figure 3. 9. Principle of the solvent-attrition process to synthesize zein nanoparticles. 
Zein dissolved in an ethanol/water mixture is sheared into smaller droplets (left-most drawing), 
the inter-diffusion of ethanol and water (solvent attrition, center) reduces the solubility of zein, 
precipitating into nanoparticles (right). 
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Chapter 4 . Sustained Release of Lysozyme from Zein 

Microcapsules Produced by Supercritical Anti-Solvent 

Technology 
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4.1. Abstract 

Sustained release has been shown to be a possible solution to minimize the binding 

between antimicrobials and food matrices, thereby enhancing the efficacy of antimicrobials 

during shelf-lives of foods. Supercritical anti-solvent is a technology that has been researched to 

produce delivery systems with sustained release of antimicrobials, based on synthetic polymers 

and non-food grade solvents. However, for food applications, regulations require solvents and 

ingredients are either generally-recognized-as-safe or approved by FDA. In this work, GRAS 

corn zein was used as a carrier material and 90% aqueous ethanol was used as a solvent to 

microencapsulate GRAS hen egg white lysozyme. The microcapsules produced using 

supercritical anti-solvent showed a continuous matrix with internal voids. The release of 

lysozyme was observed over 36 days at room temperature, with slower release at a higher pH 

between pH 2-8. At pH 4, release kinetics was further controlled by addition of sodium chloride. 

The results were discussed based on the strengths of molecular interactions as affected by pH 

and ionic strength. Because sustained release is required to inhibit microorganisms over a long 

period of time to minimize the loss of antimicrobial efficacy, supercritical anti-solvent may be a 

viable process for microencapsulation. The carrier material, zein, may also be used to 

manufacture food grade antimicrobial delivery systems using other processes such as spray 

drying. 
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4.2. Introduction 

 Recent developments in drug delivery and nanotechnology revived interests in controlled 

delivery of bioactive food components, with nutraceuticals and antimicrobials receiving most 

attention (Desai and Park 2005, Gaysinsky et al. 2005a, b, Setchell et al. 2005, Were et al. 2003, 

2004). The motivations for developing techniques to achieve controlled delivery of these 

components are to improve their availability or activity, either in food matrices or surfaces, or at 

the absorption sites of the gastrointestinal tract. For antimicrobials, it is essential to ensure their 

availability during the shelf-life of a food product, which may be achieved via the incorporation 

of antimicrobials into edible films or coatings or as capsules dispersed in food matrices. 

 Many antimicrobials are hydrophobic or amphiphilic (Davidson 2001) and they may bind 

hydrophobic food components such as lipids, hydrophobic proteins, and cell walls, which limits 

their availability (Chi-Zhang et al. 2004). As a result, traditional and naturally occurring food 

antimicrobials are used at high concentrations to achieve even moderate reductions in growth 

rates of pathogenic microorganisms in food products (Davidson 2001). The incorporation of 

large amounts of antimicrobials may compromise the sensory properties of products, not to 

mention their high costs (Sofos et al. 1998). Several antimicrobial delivery systems have been 

studied based on surfactant micelles and liposomes (Gaysinsky et al. 2005a, b, Laridi et al. 2003, 

Were et al. 2003, 2004), but much work is needed before the application of these delivery 

systems into foods.  

Formulating delivery systems and developing microencapsulation techniques may be the 

key to solving the above challenges. Recent research in controlled drug delivery has provided 

many promising techniques that can be similarly used for controlled delivery of food 

antimicrobials. This provides tremendous opportunities for food science research. On the 
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negative side, many of these techniques require stringent conditions or have other limitations that 

make application in the giant food industry problematic. 

 One promising category of scalable techniques applicable to food systems is the 

production of micro- and nanoparticles with supercritical carbon dioxide (scCO2) as a solvent or 

an anti-solvent (non-solvent). Supercritical antisolvent (SAS) is one example that involves 

continuous spraying of a solution into scCO2. The technique, and its variations, requires 

polymers dissolved in a solvent or solvent mixture (called co-solvent) miscible with CO2. With 

extraction of co-solvent out of the atomized droplets by CO2, polymers lose solubility and 

precipitate into micro- and nanoparticles.  

 The SAS process operates at a mild temperature and readily-achievable pressure as the 

critical temperature and pressure of CO2 is 31.1 °C and 7.38 MPa, respectively. The micro- and 

nanoparticles formed are dry and can be stored and directly added into any type of food products. 

When bioactive compounds co-precipitate with carrier polymers, these compounds are 

microencapsulated into the polymer matrix with preserved activities (Elvassore et al. 2001a, Falk 

and Randolph 1998, Moshashaée et al. 2000, Randolph et al. 1993). Further, because a co-

solvent (alcohol or other organic solvent) of a good miscibility with non-polar CO2 is used, the 

SAS may be particularly attractive for microencapsulating hydrophobic or amphiphilic 

antimicrobials that have limited solubility in water. 

 The potential of applying SAS in food applications has recently been shown for nisin 

microencapsulated in poly(L-lactide) (PLA) nanoparticles (Salmaso et al. 2004). The 

hydrophobic nature of L-PLA enabled intermediate hydrophobic interactions with nisin, causing 

release in a controlled manner over 45 days. The gradually released nisin was effective in 

inhibiting the growth of microorganism Lactobacillus delbrueckii spp. bulgaricus for more than 
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40 days. In comparison, free nisin was only efficacious for 4 days. The sustained release of 

antimicrobials is particularly attractive for products that have a long shelf-life. However, PLA is 

not a food ingredient, and the organic solvents used, dichloromethane and dimethylsulfoxide, are 

of toxicity concerns, although their concentrations in capsules produced from SAS can be 

reduced to be below standards for pharmaceutical products (Elvassore et al. 2001a, b, 

Moshashaée et al. 2000, Winters et al. 1997, Winters et al. 1996, Yeo et al. 1994). 

 The objective of this work was to explore the possibility of using the SAS to manufacture 

food grade antimicrobial delivery systems. Corn zein (prolamines) was used as a carrier polymer 

for formation of capsules matrix, and lysozyme was used as a model antimicrobial. The GRAS 

solvent, 90% aqueous ethanol was used as a co-solvent. 

 

4.3. Materials and Methods 

4.3.1. Materials 

Purified zein and ethanol (200 proof) was purchased from Acros Organics (Morris Plains, 

NJ). Hen egg white lysozyme, in lyophilized form, and the microorganism (Micrococcus 

lysodiekticus) used to measure the lysozyme activity were purchased from Sigma-Aldrich Co. (St. 

Louis, MO). Chemicals were used directly without purification. 

4.3.2. Apparatus and Particle Production Protocol  

The SAS-50 supercritical particle design system (Thar Technologies, Pittsburgh, PA) is 

schematically presented in Figure 4.1. Strictly, the system should be called an “aerosol-solvent 

extraction system,” based on the nomenclature used in supercritical fluids technologies (Jung and 

Perrut 2001). The description of the apparatus and particle production procedures was detailed 

previously (Zhong et al. 2008). Briefly, the system has a polymer feed stream and a CO2 stream 
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connected to a high pressure vessel. Within the pressure vessel, a sample collection basket with a 

5 μm frit at the bottom is placed. During an operation, the pressure cell was filled with CO2 and 

equilibrated to and maintained at a set temperature (40 °C) and pressure (10 MPa). The zein 

solution (5% w/v in 90% aqueous ethanol, with 0.1% lysozyme) was injected via the polymer 

feed stream by a high pressure pump through a silica nozzle (inner diameter of 100 μm) into the 

pressure cell at 1 ml/min. The total solution volume injected was 15 mL. The CO2 stream had a 

continuous flow of CO2 (grade CD-50S, 99.9% pure, Airgas, Inc., Chicago, IL) at 50 g/min 

during equilibrium and spraying. After spraying, CO2 continued to flow through the pressure cell 

for 30 min to dry the particles and extract residual solvent in the particles. The pressure cell was 

then gradually depressurized to the atmospheric pressure, followed by opening the pressure cell 

to harvest particles. 

4.3.3. Measurement of Encapsulation Efficiency 

To estimate the microencapsulation efficiency, 9 mg of zein capsules was dissolved in 5 

mL 80% ethanol where zein and lysozyme were completely solubilized. The solution was then 

diluted to an appropriate ratio during the enzymatic assay. The encapsulation efficiency (η) was 

calculated based by: 

%100
injected units lysozyme Total

capsules of mass Total capsule of mgper  units Lysyzome(%) ×
×

=η  (1) 

4.3.4. Evaluation of in vitro Release Kinetics 

To characterize release kinetics, 27 mg capsules were dispersed in a microcentrifuge tube 

filled with 1.5 mL of a 66 mM potassium phosphate buffer (adjusted to a pH between 2 and 8 

with 1 N HCl or 1 N KOH). The microcentrifuge tubes were continuously agitated on an end-to-

end shaker (Lab Industries Inc., Berkeley, CA) at room temperature. At a predetermined time 
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interval, the dispersion was centrifuged at 5,000 × g for 5 min (MiniSpin Personal, Eppendorf, 

Westbury, NY), and 1 mL of supernatant was sampled for assays. The remaining dispersion was 

supplemented with 1 mL of the fresh corresponding buffer and particles were re-dispersed for 

continued tests. The total amount of lysozyme in unit mass of powders was measured by 

dissolving 27 mg of powders in 15 mL 80% ethanol that dissolved both zein and lysozyme 

completely. The samples were tested up to a release time of 36 days. 

Calculation of accumulative lysozyme release was as follows: 

Let the lysozyme volumetric concentration (U/ml) at the first sampling time, t1 to be a1, the 

accumulative release at time t1 is: 

%100
 5.1

(%) 
o

1
t1 ×=

U
a

R     (2) 

where Uo is the total lysozyme units included in the dispersion before release tests, and the prefix 

1.5 before a1 is the total volume of dispersion. 

After removing 1 mL of supernatant, there are 0.5 a1 units of lysozyme due to the release after 

time t1, which carries to the second sampling at time t2. Similarly, if the volumetric concentration 

of supernatant from the second sampling is a2 (U/ml), the total lysozyme released up to this point 

is a1 + 1.5 a2, which gives an accumulative release at time t2: 

%100
 5.1

(%) 
o

21
t2

×
+

=
U

aa
R     (3) 

Therefore, at the ith sampling, the accumulative release is: 

%100
 5.1

(%) 
o

i
1

1
ti

×
+∑

=

−

=
U

aa
R

i

n
n

    (3) 
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4.3.5. Measurement of Lysozyme Activity 

The activity of lysozyme was measured according to the protocol provided by Sigma for 

hen egg white lysozyme (product number L-6876). The test microorganism was Micrococcus 

lysodiekticus, and measurements were based on the reduction rate of absorbance at 450 nm due 

to the lysis of cells by lysozyme at pH 6.24 and 25 °C. The lysis kinetics was measured using a 

UV/Vis spectrophotometer (model Biomate 5, Thermo Electron Corporation, Woburn, MA). 

4.3.6. Scanning Electron Microscopy (SEM) 

 The SEM tests were performed with a LEO 1525 SEM microscope (LEO Electron 

Microscopy, Oberkochen, Germany). Besides surface morphology of microcapsules, the inner 

structures were observed after fracturing capsules by a razor blade, following a literature method 

(Lee and Rosenberg 2000). The specimen was sputter-coated with a ~5 nm-thick gold layer. 

 

4.4. Results and discussion 

4.4.1. Particle Structures 

SEM images of microcapsules are shown in Figure 4.2. Capsules are heterogeneous in 

size, ranging from as small as submicrometers to as big as ~50 micrometers in diameter (Figure 

4.2A). Big particles are red-blood-cell shaped but have smooth surfaces. The internal structure 

showed a continuous network with many heterogeneously-sized voids (Figure 4.2B), but the 

outer particle surface is generally continuous and compact.  

The non-uniform size and irregular shape are similar to the observations from our 

previous study based on zein alone (Zhong et al. 2008). This may have been caused by the co-

solvent used. Because water is a very polar solvent that has low miscibility with CO2, the 
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evaporation of the co-solvent (90% ethanol) may be relatively slow, resulting in size variation 

and shape irregularity. When 95-100% aqueous methanol was used as co-solvents in our 

previous report (Zhong et al. 2008), all particles were observed to be spherical and much more 

uniform. Decreased average diameters (500 - 80 nm) and narrower distributions were observed 

when the zein solution had a higher methanol content and/or a lower zein concentration. 

Lysozyme is insoluble in 95-100% methanol; production of zein nanocapsules with encapsulated 

lysozyme may not be feasible. However, these high methanol concentrations are capable of 

extracting another antimicrobial, nisin, from a 2.5% commercial nisin preparation (Taylor et al. 

2007). Encapsulation of nisin in zein nanocapsules is currently being investigated in our group. 

4.4.2. Encapsulation Efficiency and Release Kinetics 

Approximately 0.5 g of powders was collected, which accounted for 65% of the non-

solvent mass injected. One mg of powder contained 1063 U lysozyme, which gave an 

encapsulation efficiency of: 

%5.46%100
mg 15  U/mg76133
mg 005  U/mg1063(%) =×

×
×

=η    (2) 

where 76133 U/mg in the denominator is the activity of pure lysozyme, 15 mg is the amount of 

lysozyme sprayed. 

The low encapsulation efficiency may arise from two factors. One is the difficulty to 

collect all particles (some stick to the wall of sample basket and frit), which will give a 

significant error for such a small amount of material processed. The other factor may be the 

limitation of the frit used. The frit has a nominal opening of 5 μm, but the SEM image shows 

many particles smaller than 5 μm (Figure 4.2A). A finer frit may be used in the future to improve 

the yield. 
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In vitro release kinetics in phosphate buffers at pH 2-8 are presented in Figure 4.3. 

Lysozyme showed sustained release at all pH conditions; slower release was observed at higher 

pH. For pH 2-5, it took a longer time to reach 100% release at a higher pH. At pH 6-8, continued 

release was still detected after incubation for 36 days (864 h). A monotonic decrease of nisin 

release kinetics at a higher pH was also observed for nisin encapsulated in PLA nanoparticles, 

which was caused by stronger hydrophobic interactions between nisin and PLA at a higher pH 

(Salmaso et al. 2004). In our case, hydrophobic interactions may have also contributed to slower 

release at higher pH conditions because zein is water-insoluble (hydrophobic) and a higher pH 

closer to the isoelectric point of lysozyme, 10.5-11.0 (Cunningham et al. 1991), increases the 

hydrophobicity of lysozyme (a protein). In addition, because zein is also a protein and has an 

isoelectric point of 6.8 (Cabra et al. 2005), zein is positively charged at pH 2-6 and negatively 

charged at pH 7 and 8. Therefore, electrostatic interactions are repulsive between zein and 

lysozyme at pH 2-6. However, the release profiles do not show a quick equilibrium of lysozyme 

release at pH 2-6 (Figure 4.3), indicating the significance of attractive forces, most likely 

hydrophobic interactions. At pH 7 and 8, electrostatic interactions become attractive, which, 

together with stronger hydrophobic interactions, resulted in slower lysozyme release than those 

at lower pH conditions.  

The effect of ionic strength on lysozyme was studied for buffers at pH 4, after adding 0.1, 

0.5 and 1.0 M NaCl (Figure 4.4). Without NaCl, the accumulative release reached 100% in 

approximately 192 h (8 days). Addition of 0.1 M NaCl did not change too much release 

characteristics. When the salt concentration was increased to 0.5 M NaCl, continued release of 

lysozyme was measured even after 48 days (1152 hours). Even slower release was observed 

when the NaCl concentration was increased to 1.0 M.  
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Increasing ionic strengths in buffers has two effects on molecular interactions between 

lysozyme and zein, both are proteins and positively charged at pH 4. An increase in ionic 

strength suppresses the Debye length and thus the effective distance of electrostatic repulsion 

(Israelachvili 1992). On the other hand, a higher ionic strength increases hydrophobicity of 

lysozyme. Combination of weaker electrostatic repulsion and stronger hydrophobic attraction 

contributed to slower release kinetics at higher ionic strengths in Figure 4.4. 

 

4.5. Conclusions 

Microcapsules of zein with encapsulated lysozyme were produced using SAS. The 

microcapsules had a large variation in particle sizes based on SEM, possibly due to the co-

solvent (90% ethanol) used. Although the capsule internal structure was porous, the surface of 

capsules was smooth. The encapsulated lysozyme gradually released from microcapsules when 

suspended in aqueous buffers. A faster and more complete release was observed at a lower pH 

between 2 and 8. Addition of salt into buffers at pH 4 further slowed release kinetics. The 

correlation between molecular interactions and release profiles revealed that interactions were 

more attractive at a higher pH or at a higher ionic strength at the same pH. This work 

demonstrated the feasibility of using zein as a carrier material to develop food grade delivery 

systems of antimicrobials such as lysozyme, using SAS or other processes. 
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Appendix 
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Figure 4. 1. Schematic of the supercritical anti-solvent system (aerosol-solvent extraction 
system). 
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Figure 4. 2. SEM images of representative lysozyme-loaded zein microcapsules: surface 
morphology (A) and internal structure (B, C, D). 
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Figure 4. 3. In vitro release kinetics of lysozyme from zein microcapsules suspended at 
room temperature in 66 mM potassium phosphate buffers at pH 2-8. Error bars are 95% 
confidence intervals. 
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Figure 4. 4. In vitro release kinetics of lysozyme from zein microcapsules suspended at 
room temperature in 66 mM potassium phosphate buffers at pH 4 with different concentrations 
of NaCl. Error bars are 95% confidence intervals. 
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Chapter 5 . Production of Corn Zein Microparticles with 

Loaded Lysozyme Directly Extracted from Hen Egg White 

Using Spray Drying. Part I. Extraction Studies 
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5.1. Abstract 

In this paper series, our objective was to study the feasibility of achieving sustained 

release of lysozyme by encapsulation in corn zein microparticles using spray drying. To reduce 

the material cost, this part of work focused on partially purifying lysozyme from fresh hen egg 

white (HEW) by extraction with aqueous alcohol, which was then dissolved with corn zein and 

spray-dried directly in the second part of our paper series. Specifically, the HEW was mixed with 

30-90% v/v ethanol and adjusted to pH 3.0-9.24 and then extracted up to 24 h. Following 

centrifugation of slurries, the purification performance was evaluated based on the detectable 

amount of lysozyme units, total protein content and specific activity (units of lysozyme per unit 

mass of proteins) in the supernatant. Kinetics was concluded to be an insignificant parameter, 

although a slight increase in lysozyme activity was observed up to 24 h. Conversely, the pH 

value and aqueous ethanol concentration were critical for extraction. The extraction was 

inefficient at pH above 5.0. An ethanol concentration between 30-50% was effective for 

extraction as indicated by the number of lysozyme units in the supernatant, while poorer yields 

were achieved at higher than 60% ethanol. Among the purification parameters studied, extraction 

with 50% ethanol at pH 3.5 enabled a good extraction and relatively high specific activity. 

Further, lysozyme almost completely precipitated from the supernatant prepared with 50% 

ethanol (at pH 3.5) after the ethanol concentration was increased to 90%, but dilution of the 

precipitates using deionized water back to 50% ethanol enabled a complete recovery of the 

precipitated lysozyme. Findings from this part of the work may lead to low-cost encapsulation 

technologies using partially-purified lysozyme, exemplified by spray drying in the second part of 

our paper series. 
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5.2. Introduction 

Development of delivery systems for drugs and food antimicrobials has been active in 

recent years due to the benefits such as sustained release of drugs or antimicrobials, which may 

improve the bioactivity or bioavailability, reduce the interaction with other components in the 

microenvironment, and thus prolong the efficacy or shelf life (Al-Nabulsi and Holley 2007, 

Bezemer et al. 2000, Del Nobile et al. 2008, Mecitoglu et al. 2006). Lysozyme is one of the 

extensively used model antimicrobials due to its general stability under a variety of conditions 

and a broad spectrum of antimicrobial activities against bacteria such as Bacillus 

stearothermophilus, Micrococcus spp., Clostridium tyrobutyricum, and Listeria monocytogenes 

and fungi (Johnson and Larson 2004).    

Lysozyme is a single polypeptide chain of 129 amino acids cross-linked by four disulfide 

bridges, with a molecular weight of ~14.4 kDa and isoelectric point of ~10.5-11.0 (Johnson and 

Larson 2004). The antibacterial property of lysozyme originates from the ability of the 

polypeptide to cleave the β-1, 4-glycosidic bonds between the C-1 of N-acetylmuramic acid and 

the C-4 on N-acetyl-glucosamine of bacterial peptidoglycan in the cell membrane (Johnson and 

Larson, 2004). Among several types of naturally-occurring lysozyme (type G, C, etc.), only the 

type C enzyme from hen egg white (HEW) is currently used in food preservation (Johnson and 

Larson 2004) due to the relative ease of purification, low toxicity, low effective usage levels and 

low interference on sensory qualities of foods.  

Different procedures or methods have been developed to isolate or extract lysozyme from 

HEW, including ion exchange chromatography (Banka et al. 1993 and Jiang et al. 2001), gel-

filtration chromatography (Islam et al. 2006), dye-binding chromatography (Tejeda-Mansir et al. 

2003), membrane separation (Chiu et al. 2007), ultrafiltration (Lee et al. 2003), reverse micelles 
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(Noh and Imm 2005), magnetic cation exchange (Safarik et al. 2007), and ethanol precipitation 

(Mecitoglu et al. 2006, Gemili et al. 2007). Among these techniques, partial purification by the 

ethanol precipitation method has the advantages of low-cost, easy availability and convenience 

for processing. Partially purified HEW lysozyme, compared to the more expensive purified, 

lyophilized product, can be used to reduce the materials cost for manufacturing delivery systems 

of lysozyme. 

The overall goal of this work was to investigate the feasibility of manufacturing corn 

zein-based antimicrobial delivery system of lysozyme using spray drying. Corn zein, prolamines, 

is a group of alcohol-soluble storage proteins existing mostly in the endosperm fraction of corn 

kernels (Shukla and Cheryan 2001). To prepare solutions used for spray drying, both zein and 

lysozyme need to be dissolved in ethanol/water mixtures. Thus, the ethanol precipitation method 

offers feasibility to partially purify lysozyme from HEW for subsequent steps of dissolving the 

carrier biopolymer, corn zein, in aqueous ethanol extracts and spray drying. 

The ethanol precipitation method was used to partially purify lysozyme from HEW in a 

few studies for preparation of antimicrobial-loaded films (Mecitoglu et al. 2006, Jiang et al. 

2001). In these studies, HEW proteins were precipitated at pH 4, further facilitated by 30% 

ethanol that acted as a non-solvent for some HEW proteins. However, 30% ethanol is not a 

solvent for zein. This paper was thus focused on extraction of lysozyme from HEW at various 

conditions, i.e., kinetics, pH, and ethanol concentrations to optimize lysozyme extraction and 

removal of HEW proteins. The information from this part of work was used to prepare samples 

by directly dissolving zein in HEW extracts for spray drying, discussed in the second part of this 

paper series. 
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5.3. Materials and Methods 

5.3.1. Materials 

Fresh hen eggs were obtained from a grocery store. Ethanol (200 proof) was the product 

from Acros Organics (Morris Plains, NJ). Purified lyophilized HEW lysozyme (catalog number 

L6876) and Micrococcus lysodeikticus, the indicator microorganism for measuring lysozyme 

activities, were purchased from Sigma-Aldrich (St. Louis, MO). Bovine serum albumin and 

Coomassie® Plus Reagent (product 23236) were purchased from Pierce Biotechnology 

(Rockford, IL). Polyacrylamide gels, 15% Tris-HCl Ready Gel® Precast gels, were ordered from 

Bio-Rad Laboratories (Hercules, CA). Salts, base, acids and other chemicals were from Fisher 

Scientific (Pittsburgh, PA). 

5.3.2. Extraction Protocol 

The extraction protocol was a slight modification from a literature method (Mecitoglu et 

al. 2006, Jiang et al. 2001). Egg white was carefully separated from hen eggs and mixed with a 

0.05 M NaCl solution at a volume ratio of 1:2 to three-fold dilution. The pH of suspension was 

adjusted from 9.24 initially to 7.0, 6.0, 5.0, 4.5, 4.0, 3.5 and 3.0 with 1 M acetic acid. An 

appropriate amount of ethanol was added to obtain a final ethanol concentration between 30% 

and 90% (v/v). While being continuously agitated, 1 ml of the suspension was sampled at a 

predetermined time point (i.e., shortly after adding ethanol and after mixing for 1, 2, 3, 4, 5, 6, or 

24 h) and centrifuged at 14,500 × g for 5 min (model MiniSpin Personal, Eppendorf, Westbury, 

NY). The supernatant was transferred for further analyses. The experimental design to study 

extraction kinetics and pH used the completely randomized design (CRD), with one replicate of 

the full factorial of 8 time points by 5 pH values at ethanol concentration of 30%, 40% and 50%. 
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5.3.3. Determination of Lysozyme Activity  

Lysozyme activities were determined according to a method of Sigma-Aldrich (St. Louis, 

MO) for product HEW lysozyme (catalog number L6876), with slight modification in the 

measurement period and sample and reagent volumes. Micrococcus lysodeikticus was used as the 

test microorganism, suspended in a 66 mM potassium phosphate buffer at pH 6.24. The 

suspension after addition of samples was monitored the reduction in absorbance at 450 nm for 3 

min by using a UV/Vis spectrophotometer (model Biomate 5, Thermo Electron Corporation, 

Woburn, MA) with a thermal jacket set at 25 °C. One unit of lysozyme is defined as the 

reduction of absorbance of 0.001 per min at the above test conditions. Each sample was tested in 

triplicate. 

5.3.4. Determination of Total Protein Content  

The total protein content of samples was determined by the Bradford method with a 

Coomassie® Plus Protein Assay kit (product 23236, Pierce), and bovine serum albumin was used 

as a reference. The absorbance was measured at 595 nm, and triplicate tests were performed for 

each sample. 

5.3.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Hen egg white proteins in extracts were separated according to their molecular weights at 

denatured conditions on a 15% Tris-HCl gel (Ready Gel® Precast Gel from Bio-Rad). 

Electrophoresis was performed with a Protean® II xi 2-D Cell (Bio-Rad) at a constant voltage of 

200 V until the protein marker standards reached the gel bottom. The staining and destaining 

procedures followed the instruction manual of the Trish-HCl gel. The steps included staining in a 

mixture of methanol, acetic acid and Coomassie® Blue, destaining in a mixture of methanol and 
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acetic acid, and rinsing with distilled water until satisfactory visibility of protein bands. The 

destained gels were dried and photographed. 

5.3.6. Data Analyses 

Data analyses were carried out by using SAS software (v. 9.1, SAS Institute, Cary, NC). 

Significant differences were analyzed with a least-significant-difference (P < 0.05) mean 

separation method (LSD). Response surface regression was used to analyze the importance of 

independent variables (i.e., extraction time, pH, or ethanol concentration) in explaining 

dependent variables (the extracted lysozyme units, total protein content, etc.) and to predict the 

optimum extraction conditions.   

 

5.4. Results and Discussion 

5.4.1. Extraction Kinetics 

Extract kinetics as affected by pH (3.5 - 9.24) and ethanol concentration (30-50%, v/v) 

are presented in Figure 5.1. During extraction up to 24 h, there were slight fluctuations in 

detected lysozyme activities in different extraction time points for each pH and each ethanol 

concentration; however, no obvious conclusion could be made regarding the effect of extraction 

time.  

To statistically understand the effect of kinetics on lysozyme extraction, a response 

surface analysis was performed using SAS (Figure 5.2). A slight increase in lysozyme extraction 

up to 24 h was predicted based on the actual experimental data (Figure 5.2A). However, the 

response surface regression analysis result (Figure 5.2B) showed the insignificance of extraction 

time (P = 0.6186). 
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Nevertheless, an extraction time of 6 h was sufficient to extract most lysozyme at all 

studied pH and ethanol conditions, and was chosen to screen extraction conditions in the next 

step. The selection was similar to the recommendation of Gemili et al. (2007): 4-6 h for 30% 

ethanol and 6-8 h for 40% ethanol. 

5.4.2. Extraction pH 

At the three studied ethanol concentrations, i.e., 30%, 40% and 50%, little lysozyme 

activity was detected in extracts at pH 6.0 and above (Figure 5.1A). The inefficient extraction at 

pH 6 or higher may have been caused by the co-precipitation of lysozyme with HEW proteins, 

due to electrostatic interactions. Ovalbumins, the most abundant protein in HEW, have an 

isoelectric point (pI) of 4.7 (Moritz and Simposon 2005); lysozyme has a pI of ~10.5-11.0 

(Johnson and Larson 2004). Therefore, ovalbumins are positively charge below pH 4.7 and 

negatively charge above pH 4.7, while lysozyme is always positively charged at pH 3.5-9.24. 

The electrostatic attraction between lysozyme and ovalbumins may have caused the co-

precipitation of lysozyme with ovalbumins: a reduced efficiency at pH 5 (ovalbumins are weakly 

negatively-charged) and inefficiency at pH 6 and above (when ovalbumins become more 

extensively charged). In addition, some precipitated HEW proteins are hydrophobic and their 

attraction with lysozyme may also be strengthened when the pH is increased to closer to the pI of 

lysozyme. 

The statistical analysis (Figure 5.2B) showed that pH is a significant independent variable 

for lysozyme extraction with both significant linear and quadratic effects of pH (P < 0.0001). 

Additionally, the response surface regression predicted higher yields at lower extraction pH 

conditions (Figure 5.2C). Also, the analysis showed that ethanol concentration (30-50%) and the 

interaction between pH and ethanol concentration were significant (P < 0.0001). However, the 
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effect of ethanol concentrations in Figure 5.1 was not compared because different batches of 

HEW were used for each ethanol concentration. We addressed this issue by reinvestigating 

effects of ethanol concentration and the interaction between ethanol concentration and pH using 

HEW from a same batch of HEW at a fixed extraction time of 6 h.  

5.4.3. Ethanol Concentration 

The same batch of HEW was used to investigate the effects of ethanol concentration and 

interaction between pH and ethanol concentration. Further, ethanol concentrations greater than 

60% (v/v) were studied for the possibility of using the centrifuged supernatant to directly 

dissolve zein for spray drying. A pH value higher than 5.0 was not studied because of the poor 

extraction (Figure 5.1). The extraction variables were compared using three parameters: number 

of lysozyme units (indicative of lysome molecules that are active), total protein concentration in 

extracts (relative indication of amount of impurities), and specific activity (units of lysozyme per 

unit mass of protein, indication of purity). 

Lysozyme activity in extracts  

The amount of lysozyme extracted, compared after conversion to lysozyme units per mL 

HEW, showed that an ethanol concentration between 30-50% was generally effective for 

extraction (Figure 5.3A). The highest lysozyme activity was detected in extracts prepared at pH 

3.5 and 4.0 with 50% ethanol. When the pH was decreased to 3, the extraction became less 

efficient, especially for the 50% ethanol treatment. The SDS-PAGE experiment showed a band 

corresponding to lysozyme extracted at pH 3 and 50% ethanol (Figure 5.5A), indicating the 

presence of lysozyme in the supernatant; the much lower activity tested may have been caused 

by the denaturation of lysozyme. 
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When the ethanol concentration was increased to 60 and 70%, lysozyme activities in 

extracts dramatically decreased at all studied pH values (i.e., pH 3-4.5). When the ethanol 

concentration was increased to 90%, lysozyme activity in the centrifuged extracts fell below the 

detection limit of the assay method.  

Total protein concentration in extracts  

The total protein concentration in centrifuged HEW extracts decreased with an increase 

in ethanol concentration (Figure 5.3B), while the effect of extraction pH was not significant. 

SDS-PAGE showed similar band patterns and intensities for 30-50% ethanol treatments (Figure 

5.5B, lanes 2-4). The band patterns were similar but the intensity was decreased when the 

ethanol concentration was increased to 60% (Figure 5.5B, lane 5). For the 70% ethanol treatment, 

there was only a visible band corresponding to lysozme (Figure 5.5B, lane 6). However, it should 

be noted that protein concentrations are expected to be lower by simple dilution with a larger 

amount of ethanol. We further examined the effect of ethanol concentration on precipitating 

HEW proteins by converting the results to total proteins extracted from each mL HEW (Figure 

5.4). The data indicate that more HEW proteins precipitated at a higher ethanol concentration.  

Specific activity of extracts  

At pH 3.0, the effect of ethanol concentration on specific activity (Figure 5.3C) was 

similar to that on the extracted lysozyme activity (Figure 5.3A): a higher specific activity at a 

lower ethanol%. Similar changing trends of lysozyme activity and specific activity were 

observed at pH 3.5 and 4.0. The specific activity of extracts at pH 4.5 was unchanged when 

ethanol concentration was increased from 30% up to 60% (Figure 5.3C), different from a 

monotonic decrease in the extracted lysozyme activity (Figure 5.3A). This indicates that, at pH 

4.5, simultaneous precipitation of lysozyme (numerator in the definition of specific activity) and 
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HEW proteins (denominator in the definition) occurred proportionally at 30-60% ethanol. 

Comparing all the studied conditions, the highest specific activity (best purity) and most 

lysozyme activity (best yield) was observed at pH 3.5 with 50% ethanol and was concluded as 

the recommended conditions for future work. 

5.4.4. SDS-PAGE 

SDS-PAGE was performed to study the effects of pH and ethanol concentration on 

protein types in extracts, based on the molecular weight. HEW has 5 major proteins - ovalbumins 

(64%, MW 45 kDa), conalbumin (12%, MW 76 kDa), lysozyme (3.5%, MW 14.4 kDa), 

ovomucin (11%) and avidin (0.05%, MW 68.3 kDa) (Li-Chan et al. 1995) . Crude ovomucin has 

two subunits, α- and β-. The α-ovomucin has two types: α1- and α2- with a molecular weight of 

150 kDa and 220 kDa, respectively, based on SDS-PAGE; β-ovomucin has a molecular weight 

of 400-720 kDa (Hiidenhovi, 2007).  

Our SDS-PAGE result showed three protein bands (Figure 5.5), similar to the results of 

Raikos et al. (2005) who considered these proteins to be conalbumin (76 kDa), ovalbumin (45 

kDa), and lysozyme (14.4 kDa). The largest band on the polyacrylamide gels may be ovalbumin 

after ethanol precipitation, because it is most abundant among the 5 major HEW proteins and has 

similar molecular weight ~40-50 kDa. However, the exact identification of these bands needs 

additional techniques such as Western blotting, 2-D gel electrophoresis and MALDI-TOF mass 

spectrometry (Raikos et al., 2005) and is beyond the scope of this work. Nevertheless, SDS-

PAGE helped the understanding of extraction conditions on lysozyme extraction, as discussed in 

the above relevant sections. 
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5.4.5. Effect of Ethanol Concentration on the Measured Lysozyme Activity 

Mecitoglu et al. (2006) discussed the possibility of activation of lysozyme by ethanol. We 

addressed this concern by using purified lyophilized HEW lysozyme, dissolved in 0-90% ethanol. 

The measured specific activities are listed in Table 5.1. The highest lysozyme activity was 

detected for the 60% ethanol treatment, followed by the 70% ethanol treatment, while there was 

no statistical difference for other ethanol concentrations (0, 30, 40, 50 and 90%). The exact 

mechanism of enhanced lysozyme activity in 60% ethanol is beyond the scope of this work. 

Nevertheless, the effect of ethanol on lysozyme extraction should not affect the conclusions 

above, because 60% ethanol was observed to be less efficient than other lower ethanol 

concentrations (Figure 5.3A). 

5.4.6. Precipitation of Lysozyme at High Ethanol Concentrations  

As shown in Figure 5.3A, the efficiency of lysozyme extraction decreased dramatically 

when the ethanol concentration was increased to 60 and 70%, and no activity was detectable in 

extracts when ethanol concentration was increased to 90%. 60-90% ethanol is of interest to our 

work because zein is soluble in this ethanol concentration range. Because little or no lysozyme 

activity was detected in the supernatant after centrifugation of extracts prepared with 60-90% 

ethanol, the direct use of supernatant for microencapsulation is inappropriate. Instead, the slurry 

with precipitated lysozyme and HEW proteins should be used. This should not affect our 

eventual goal of microencapsulation, if we can remove substantial amount of HEW proteins, 

because HEW proteins are GRAS ingredients. The question however remains regarding whether 

or not the precipitated lysoyzme maintains activity or can be recovered. 

To test the lysozyme activity affected by extraction with high ethanol concentrations and 

to find suitable conditions for later spray drying studies, an extract was prepared by extraction 
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for 6 h at 50% ethanol and pH 3.5 to remove a portion of HEW proteins. The supernatant after 

centrifugation (Treatment T0) was transferred and added with ethanol to 90%. The slurry was 

then centrifuged and a portion of supernatant (Treatment T1) was transferred for measurement of 

lysozyme activity. The remainder suspension was readjusted to 50% ethanol using deionized 

water (Treatment T2); the precipitates were completely dissolved after adjusting back to 50% 

ethanol. A control was prepared using purified lysozyme, processed identically to the HEW 

extract. 

The results, normalized by the lysozyme activity of Treatment T0, are plotted in Figure 

5.6. The purified lysozyme did not show big variations after decreasing or increasing ethanol 

content, consistent with the results in Table 5.1. For the HEW extract, lysozyme activity in the 

supernatant after adjusting to 90% ethanol (Treatment T1) was below the detection limit of the 

assay method. However, after adjusting ethanol concentration back to 50% ethanol (Treatment 

T2), an activity 229% that of the Treatment T0 was measured. Because ethanol content had no 

effect on lysozyme activity, based on purified, lyophilized lysozyme, the dilution process may 

have released more lysozyme from the precipitates (pellets corresponding to the Treatment T1). 

Nevertheless, Figure 5.6 indicates the maintained lysozyme activity after increasing the ethanol 

concentration in the HEW extract.  

The findings suggest that 50% ethanol and pH 3.5 can be used to extract lysozyme from 

HEW to remove a significant portion of HEW proteins. The extract can be adjusted to 60-90% 

ethanol to dissolve zein. The slurry can then be used for spray drying, reported in the second part 

of this paper series. 
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5.5. Conclusions 

The aqueous pH value and ethanol concentration were critical for the extraction of 

lysozyme from HEW, while kinetics was not an important parameter. At an ethanol 

concentration of 30-50%, poor extraction was observed at pH 5.0 and above. Poor extraction was 

also the case for extraction with higher than 60% ethanol. The recommended extraction 

condition is 50% ethanol at pH 3.5 for 6 h because of a good extraction and relatively high purity. 

Lysozyme in the extract prepared with 50% ethanol at pH 3.5 precipitated after the ethanol 

concentration was increased to 90%, but the lysozyme activity was completely recovered after 

dilution of the precipitates using deionized water to 50% ethanol. Findings from this part of the 

work may lead to low-cost encapsulation technologies using partially-purified lysozyme, 

exemplified by spray drying in the second part of our paper series.
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Figure 5.1 A. Kinetics of lysozyme extraction with 30% ethanol at different pH 
conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% confidence intervals (CI) 
from three independent measurements. 
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Figure 5.1 B. Kinetics of lysozyme extraction with 40% ethanol at different pH 
conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 
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Figure 5.1 C. Kinetics of lysozyme extraction with 50% ethanol at different pH 
conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 
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Figure 5.2 A. Response surface analysis to interpret the effects of time, pH, and ethanol 
concentration on lysozyme extraction. 
Symbols indicate the actual experimental data, solid lines indicate the predicted result (center 
solid line) and 95% CI for mean predictions (two mirrored solid line), and dashed lines indicate 
95% CI for individual predictions. 
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Figure 5.2 B. Significance analysis and coefficient estimates in response surface 
regression for independent variables of time (hour), pH, and ethanol concentration, with respect 
to the dependent variable of extracted lysozyme activity. 
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Figure 5.2 C. Contour plot of variables, time and pH, on lysozyme extraction from 
response surface analysis. 
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Figure 5.3 A. Comparison of extractable lysozyme units in 6-h extracts, converted to per 
mL HEW, prepared at various pH and ethanol conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 



www.manaraa.com

 105

(

Ethanol%
20 30 40 50 60 70 80

To
ta

l P
ro

te
in

 (u
g/

m
L 

ex
tr

ac
t)

0

200

400

600

800

pH3
pH3.5
pH4
pH4.5

A
A

A
A

 
Figure 5.3 B. Comparison of total protein content in lysozyme extracts prepared at 

various pH and ethanol conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 
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Figure 5.3 C. Comparison of specific activity of lysozyme extracts prepared at various 
pH and ethanol conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 
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Figure 5.4. 1. Comparison of amount of proteins extracted from per mL HEW at various 
pH and ethanol conditions. 
Superscripts with different letters in the legend indicate that the results from the corresponding 
pH conditions are statistically different (P < 0.05). Error bars are 95% CI from three independent 
measurements. 
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Figure 5.5. 1. Effects of solvent conditions on lysozyme extraction analyzed by SDS-
PAGE. 
 (A) Effect of pH (Lane 1:  molecular weight standards; Lanes 2-5: extracts with 50% ethanol at 
pH3, 3.5, 4, and 4.5, loaded with 1.53, 1.73, 1.78, and 1.77 μg protein, respectively), and (B) 
Effect of ethanol concentration (Lane 1:  molecular weight standards; Lanes 2-6: extraction with 
30%, 40%, 50%, 60%, and 70% ethanol at pH3.5, loaded with 1.96, 1.80, 1.73, 1.09, and 0.41 μg 
protein, respectively). 
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Figure 5.6. 1. Comparison of lysozyme activity in a 6-h extract prepared with 50% 
ethanol, pH 3.5 (Treatment T0), in the supernatant after centrifuging a sample prepared by 
adjusting the Treatment T0 to 90% ethanol (Treatment T1), and in a sample after readjusting the 
pellets from preparation of the Treatment T1 to 50% ethanol (Treatment T2). Error bars are 95% 
confidence intervals from three independent measurements. 
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Table 5. 1 Specific activity of purified, lyophilized lysozyme dissolved in different 

ethanol concentrations 

Ethanol concentration (%) Specific activity (IU/mg)* 

0% 76133 ± 1473B 

30% 63733 ± 3106C 

40% 67333 ± 2893BC 

50% 64696 ± 2503C 

60% 113103 ± 10027A 

70% 75454 ± 1388B 

90% 63333 ± 5326C 
* Numbers are averages ±standard deviations from three measurements. Numbers with different 
superscripts are statistically different. 
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Chapter 6 . Production of Corn Zein Microparticles with 

Loaded Lysozyme Directly Extracted from Hen Egg White 

Using Spray Drying.  Part II. Particle Properties and 

Release Kinetics 
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6.1. Abstract 

Microencapsulation of hen egg white (HEW) lysozyme into corn zein was investigated 

by using spray drying in this study. Several variables, i.e., zein concentration and solvent 

composition in stock solution (60 - 90% ethanol) and addition of an amphiphilic (Tween 40) or 

hydrophobic chemical (thymol), were studied for the effect on microcapsule microstructure and 

lysozyme release characteristics. Physical properties of capsules, i.e., particle size, surface 

morphology and internal structures, were a strong function of formulations used in spray drying. 

Porous particles were produced for the formulations without additives. The addition of Tween 40 

changed the capsule matrix to packed nanoscale particles. The addition of thymol assisted the 

formation of a continuous capsule matrix. Besides affecting the detailed microstructures 

differently, these two additives had different effects on release profiles. Capsules without 

additives had no sustained release. The added Tween 40 did not change the release 

characteristics of lysozyme, while thymol resulted in gradual release of lysozyme, especially 

nearby neutral pH. In all case, less lysozyme was released at higher pH, due to stronger 

molecular attraction between lysozyme and carrier zein. This work demonstrated that, with 

appropriate formulations, spray drying can be used to produce food grade antimicrobial delivery 

systems with sustained release. Our results also showed that release profiles are function of both 

capsule microstructure and molecular interactions between antimicrobials and the carrier 

biopolymer.  
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6.2. Introduction 

Microencapsulation of antimicrobials has attracted much interest in recent years due to 

the fact that sustained release of antimicrobials can potentially improve the antimicrobial 

bioavailability by reducing the interaction with food matrices, and thus prolong the shelf life of 

products (Gouin 2004). Sustained release may be achieved by entrapping, coating or 

microencapsulating antimicrobials in structures formed of certain food biopolymers, in the forms 

of capsules and films (Bezemer et al. 2000, Gouin 2004).  

Particulate delivery systems of antimicrobials with controlled release have been mainly 

studied and developed for pharmaceutical applications. Bezemer et al. (2000) reported that 

encapsulating lysozyme in a polymer blend of poly(ethylene glycol) and poly(butylene 

terephthalate) resulted in zero-order release kinetics of the encapsulated lysozyme. Salmaso et al. 

(2004) showed that microencapsulation of nisin in poly(L-lactide) using a supercritical anti-

solvent technique (SAS) resulted in sustained release of nisin from nanoparticles over 45 days. 

However, many polymers and solvents used in production of drug delivery systems are 

questionable for food applications due to the toxicity concerns of ingredients and solvents. In 

addition, most processes developed for manufacturing drug delivery systems are either too 

expensive or cannot be scaled up to meet the capacity of food production. Identification of food 

grade ingredients as carriers, solvents, and low-cost and scalable processes remains a challenge 

for developing food grade antimicrobial delivery systems. 

Our previous study (Jin and Zhong 2007) showed that commercially-available purified 

lyophilized lysozyme was successfully encapsulated in corn zein by using SAS. Gradual release 

of lysozyme from zein microcapsules lasted over 40 days, which indicates that corn zein is a 

potential carrier biopolymer for developing food grade particulate antimicrobial delivery systems. 
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Because the SAS requires specialized equipment to achieve the supercritical state of carbon 

dioxide (that is an anti-solvent to biopolymers), the high capital and operational costs may not be 

currently feasible for food production.  

This work focused on replacement of the SAS by spray drying, a low-cost, widely 

accepted and commercially feasible process, to produce food grade delivery system of a GRAS 

antimicrobial – lysozyme. Corn zein and aqueous ethanol were selected as the carrier material 

and solvent, respectively. To further reduce the material cost, partially purified lysozyme directly 

extracted from hen egg white (HEW) was used, with details reported in the first part of this paper 

series. Specific tasks were to (1) investigate the effect of formulations on surface and internal 

microstructure of spray-dried zein microparticles and (2) evaluate release characteristics of 

lysozyme from synthesized microparticles in model buffers at different pH conditions. 

 

6.3. Materials and Methods 

6.3.1. Materials 

Fresh hen eggs were obtained from a grocery store. Ethanol (200 proof) and corn zein 

were products from Acros Organics (Morris Plains, NJ). Thymol and Micrococcus lysodeikticus, 

indicator microorganism for estimating lysozyme activities, were purchased from Sigma-Aldrich 

(St. Louis, MO). Other chemicals were from Fisher Scientific (Pittsburgh, PA). 

6.3.2. Extraction of Lysozyme from HEW 

The extraction condition was established in the first part of this paper series. Briefly, egg 

white was carefully separated from eggs and diluted three-fold with a 0.05 M NaCl solution, 

adjusted to pH 3.5 with 1 M acetic acid, and then mixed with an equal volume of ethanol to 

achieve a final ethanol concentration of 50%. After extraction for 6 h, the mixture was 
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centrifuged at 5,000 × g for 30 min (Sorvall RC 5B Plus, Newtown, CT). The supernatant was 

taken for preparation of stock solutions used in spray drying. 

6.3.3. Production of Microparticles using Spray Drying 

The supernatant with pH 3.5 (~50 v/v% ethanol) was adjusted to 60-90% (v/v) ethanol, 

followed by dissolving 0.4-6.4%, w/v, corn zein. In two additional trials, 0.05% w/v Tween 40 or 

0.032% w/v thymol was supplemented to the HEW extract adjusted to 90% ethanol. The final 

suspension (feed) was then spray-dried with a B-290 Mini Spray Dryer (BÜCHI Labortechnik 

AG, Postfach, Switzerland) at inlet and outlet temperatures of 80 and 50-55 °C, respectively, and 

a feed rate of 6.67 mL/min. The gas applied in the process was compressed air. The collected 

products were kept in a -20 °C freezer until analyses. 

6.3.4. Scanning Electron Microscopy (SEM) 

The inner and outer structures of microparticles were imaged using a LEO 1525 

microscope (LEO Electron Microscopy, Oberkochen, Germany). The microparticles were 

loosely attached onto a black adhesive tape mounted on a stainless steel stub. Besides directly 

imaging surface morphology, the inner structures were observed for microparticles fractured by a 

razor blade that moved perpendicularly through a layer of sample powder, as used by Lee and 

Rosenberg (2000). To prevent the charging on protein samples, the specimen was sputter-coated 

with a gold layer of ~5 nm thickness. Particle diameters were estimated based on SEM images, 

with the ImageJ software available from the National Institute of Health (Bethesda, MD). 

6.3.5. Determination of Yield and Encapsulation Efficiency 

The particle yield was defined as the ratio of collected powder mass to that of the non-

solvent mass in the feed before spray drying (Equation 1). Due to the difficulty in product 

collection (some powders stuck to the drying chamber), the encapsulation efficiency (Equation 2) 
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was defined as the ratio of lysozyme units per mg product (after spray drying) to those per mg 

non-solvent mass in the feed (before spray drying). Lysozyme units per mg product were 

estimated using solutions prepared by dissolving 27 mg of a powdered product in 1.5 mL 55% 

aqueous ethanol. Lysozyme units in the feed were measured before spray drying. 

feedin themasssolvent -Non
product collected of Mass 100%  yield% Particle ×=    (1) 

feed in the masssolvent -non mgper  units Lysozyme
product mgper  units Lysozyme 100%  %efficiencyion Encapsulat ×=   (2) 

6.3.6. Evaluation of in vitro Release Kinetics 

In vitro release kinetics was evaluated using 66 mM potassium phosphate buffers 

adjusted to pH 2-8 by using 1 N potassium hydroxide or 1 N HCl. The 27 mg microcapsules 

were suspended in 1.5 mL buffers contained in polystyrene microcentrifuge tubes. The 

suspensions were gently agitated using an end-to-end shaker (Lab Industries Inc., Berkeley, CA) 

at room temperature. At a predetermined release time point, suspensions were centrifuged at 

5,000 × g for 5 min (model MiniSpin Personal, Eppendorf, Westbury, NY), and 1 mL of 

supernatant was transferred and measured for lysozyme activity. The remainder sample was 

supplemented with 1.0 mL of the fresh corresponding buffer, resuspended and mixed for 

continued release studies. The total amount of lysozyme in unit mass of powders was measured 

by dissolving 27 mg of powders in 15 mL 80% ethanol that dissolved both zein and lysozyme 

completely. 

Calculation of accumulative lysozyme release was as follows: 

Let the lysozyme volumetric concentration (U/ml) at the first sampling time, t1 to be a1, the 

accumulative release at time t1 is: 
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%100
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R     (2) 

where Uo is the total lysozyme units included in the dispersion before release tests, and the prefix 

1.5 before a1 is the total volume of dispersion. 

After removing 1 mL of supernatant, there are 0.5 a1 units of lysozyme due to the release 

after time t1, which carries to the second sampling at time t2. Similarly, if the volumetric 

concentration of supernatant from the second sampling is a2 (U/ml), the total lysozyme released 

up to this point is a1 + 1.5 a2, which gives an accumulative release at time t2: 
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Therefore, at the ith sampling, the accumulative release is: 

%100
 5.1

(%) 
o

i
1

1
ti

×
+∑

=

−

=
U

aa
R

i

n
n

    (3) 

6.3.7. Measurement of Lysozyme Activity 

Lysozyme activity was determined according to a method of Sigma-Aldrich (St. Louis, 

MO) for product HEW lysozyme (catalog number L6876) after slight modification.  

Micrococcus lysodeikticus was used as the test microorganism, suspended in a 66 mM potassium 

phosphate buffer at pH 6.24 to achieve a cell substrate with a final concentration of ~0.015% 

(w/v). The mixture of sample and buffer with the test microorganism was monitored the 

reduction in absorbance at 450 nm for 3 min by using a UV/Vis spectrophotometer (model 

Biomate 5, Thermo Electron Corporation, Woburn, MA). The cuvette cell had a thermal jacket 

with a recirculating water stream at 25 °C. One unit of lysozyme is defined as a reduction of 

absorbance by 0.001 per min at the above test conditions. Each sample was tested in triplicate. 
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6.3.8. Statistical Analysis 

Significant differences of particle sizes were analyzed with a least-significant-difference 

(P < 0.05) mean separation using SAS software (v. 9.1, SAS Institute, Cary, NC). 

 

6.4. Results and Discussion 

6.4.1. Yield, Encapsulation Efficiency, and Particle Size 

The yields, encapsulation efficiencies and particle sizes of synthesized microparticles 

under different treatments are summarized in Table 6.1. The particle yields were 56-80%, typical 

for a lab-scale spray dryer due to the difficulty in sample collection (i.e., from the portion 

sticking to the drying chamber wall). The encapsulation efficiency was 78-100%, indicating the 

good thermal stability of lysozyme. Particles produced with low zein% and high ethanol% had a 

smaller average diameter (Trials A1-A4 in Table 6.1). Reducing the zein concentration alone or 

adding 0.033% of a hydrophobic compound, thymol, also reduced the average particle diameter 

(Trial A4 vs. B1 and D1); while the addition of 0.05% surfactant Tween 40 did not significantly 

change the average particle diameter (Trial A4 vs. C1). The specific effects of each variable 

however were not conclusive because of the limited data points. 

Encapsulation efficiencies are higher than the calculated particle yields for all samples 

(Table 6.1). One reason is that the incomplete sample collection (of the portion sticking on the 

drying chamber wall) reduces the particle yield but may not affect the proportion of lysozyme 

and zein before and after spray drying, assuming both zein and lysozyme precipitate similarly  

during spray drying. As for the particle size (Table 6.1), reducing zein% and increasing the 

ethanol% in the feed (Trials A1-A4) significantly decreased the microcapsule diameter and 

polydispersity (smaller standard deviation). Reducing polymer concentration facilitates the 
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atomization (due to a lower feed viscosity) during spraying, while a higher ethanol concentration 

facilitates the solvent evaporation during drying. Both factors may have contributed to the 

observations. 

6.4.2. Surface Morphologies and Inner Structures  

Representative particles of Trials A1-A4 are shown in Figure 6.1. Most particles showed 

irregular surfaces which indicated porous structures. Conditions facilitating formation of smaller 

particles (Trials A1 to A4, A4 vs. B1; Table 6.1), i.e., a lower zein% and a higher ethanol%, 

generally reduced the roughness of capsule surface. When the additive Tween 40 or thymol was 

used in the 90% ethanol stock solution, the surface smoothness of particles was improved 

(Figure 6.2 vs. Figure 6.1 A4). 

All particles shown in Figure 6.1 were very fragile and fractured completely when 

sheared by the razor blade during the preparation step for SEM experiments, exemplified in 

Figure 6.3 for the 60% and 70% ethanol samples (Figures 6.2A1i and 6.2B1i). The open inner 

structures corresponded well to the indication of porous structures based on surface morphology 

(Figure 6.1). When Tween 40 was added into the stock solution before spray drying, the inner 

structure of these capsules showed packed nanometer-sized particles with the presence of some 

cavities (Figure 6.3C1i). In contrast, the sample containing thymol had a finer inner structure 

without identifiable nanoparticles (Figure 6.3 D1i).  

The variables of ethanol% and zein% presumably affected microstructure formation by 

the following two phenomena. The first one is that evaporation of ethanol (which evaporates 

faster than water) gradually reduces the solvency of aqueous ethanol in the atomized droplets 

with respect to zein that is soluble in 55-90% ethanol. This means that zein will become 

insoluble more quickly for samples with a lower ethanol concentration, which contributes to 
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quicker solidification of zein (a biopolymer) during spray drying. The second one is related to 

the effects of polymer concentration on polymer solidification. Similar to crystallization, more 

nuclei are formed and the growth of nuclei is faster at a higher polymer concentration 

(Kashchiev and van Rosmalen 2003). Both phenomena lead to faster polymer solidification, 

which results in a higher degree of microstructure irregularity (Dixon et al. 1993) at a lower 

ethanol% and higher zein% for Trials A1-A4, also Trials A4 vs. B1.  

For the particles produced with additives (Tween or thymol), the enhanced smoothness in 

particle surface is apparently due to the additional zein (protein)-surfactant and protein-thymol 

interactions. Understanding and investigation of these interaction mechanisms will be future 

research topics. Nevertheless, because lysozyme is encapsulated inside capsules, different inner 

structures of samples produced with various formulations indicate that lysozyme will experience 

different mass transfer resistances when diffusing outwards to the capsule surface. 

6.4.3. In vitro Release Kinetics of Lysozyme from Capsules without Additives 

In vitro release kinetics of samples prepared from formulations A1-A4 in Table 6.1 are 

presented in Figure 6.4. Three trends were observed: (1) the release quickly reached equilibrium, 

which means no sustained release, (2) a smaller amount of lysozyme was released at a higher 

buffer pH, and (3) a smaller amount of lysozyme released from capsules prepared with the feed 

adjusted to a higher ethanol concentrationand a lower zein concentration (except for the 90% 

ethanol treatment).  

The first and third trends may have resulted from, respectively, porous structures of 

capsules and a more porous structure of capsules produced at a higher zein concentration and 

lower ethanol concentration. The second trend may be explained by the hydrophobic and 

electrostatic interactions between zein and lysozyme at different pH conditions. At a higher pH 
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(closer to the isoelectric point of lysozyme, 10.5~11.0; Johnson and Larson 2004), the increased 

hydrophobicity of lysozyme strengthens hydrophobic interactions between lysozyme and carrier 

zein, retaining more lysozyme in capsules. Additionally, lysozyme is always positively charged 

at the pH conditions used, while the carrier zein (pI of 6.8; Cabra et al. 2005) was positively 

charged at pH 2 and 6 and negatively charged at pH 8. The electrostatic interactions between 

lysozyme and carrier zein molecules were thus attractive at pH 8 and repulsive at the other two 

pH conditions. Overall, the interactions between zein and lysozyme were more attractive at a 

higher pH, which resulted in more lysozyme retention in zein microcapsules.  

6.4.4. In vitro Release Kinetics of Lysozyme from Capsules with Tween 40 or 

Thymol 

The effects of additives in formulations during microencapsulation were studied for the 

feed adjusted to 90% ethanol, with the addition of a surfactant (0.05% Tween 40) or a 

hydrophobic compound (0.033% thymol). In vitro release kinetics of HEW lysozyme is plotted 

in Figure 6.5. The addition of Tween 40 did not change the characteristics of release profiles, i.e., 

no gradual release, but retained more lysozyme in capsules at all pH conditions (Figure 6.5). The 

small amount of Tween 40 added in the formulation changed the microstructure of capsules from 

a porous structure (Figure 6.3A1i) to a continuous inner structure consisting of nanoparticles 

(Figure 6.3C1i), which may have resulted in the more retention of lysozyme in particles. Tween 

40 is a nonionic surfactant and the small amount of Tween 40 possibly is insufficient to modulate 

molecular interactions between lysozyme and zein. 

The addition of thymol resulted in a steady increase of released lysozyme: less noticeable 

at pH 2 and 6 and more significant at pH 8 (Figure 6.5). A smaller amount of release at a higher 

pH is similar to other treatments; therefore it is likely that the addition of thymol did not have 
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significant impact on molecular interactions between zein and lysozyme. Indeed, the amount of 

released lysozyme at pH 2 and 6 is similar to the sample with added Tween 40 after several 

hours (Figures 6.5A and 6.5B), and the amount of released lysozyme at pH 8 is similar to the 

comparable sample without additives (Figure 6.5C). Microstructurally, the added thymol 

(0.035%v/v) in the formulation formed a more compact structure that provides a stronger mass 

transfer resistance for lysozyme diffusion than those without additives or with Tween 40.  

The impact of additives on release characteristics of lysozyme gives interesting directions 

for future research. Thermodynamically, molecular interactions between lysozyme and zein 

determine the equilibrium of lysozyme attracted to the carrier biopolymer. This equilibrium 

determines how much lysozyme can be eventually released, if given enough time. Kinetically, 

the “free” lysozyme in microcapsules undergoes typical mass transfer processes: diffusion from 

internal structures to the particle surface and then from the surface to the incubation buffer. Since 

lysozyme is soluble in water, at pH 2-8, the mass transfer resistance from the particle surface to 

the ambient aqueous phase is expected to be minimized. The strategy is then how to control 

capsules microstructure formation to manipulate internal mass transfer. Both thermodynamic and 

kinetic bases for improvement of release characteristics may be to modulate interactions between 

biopolymers (lysozyme and zein; zein and zein) during particle production and during release. 

Experimentally, this may be achieved by studying various particle production conditions and 

formulations to include additives of plasticizers, surfactants or other compounds that can affect 

the thermodynamics and microstructure formation. 

6.5. Conclusions 

This work illustrated the promise of using spray drying to manufacture delivery systems of 

antimicrobials with gradual release. Physical properties of capsules, i.e., particle size, surface 
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morphology and internal structures, were significantly affected by the formulations used in spray 

drying. The addition of a surfactant Tween 40 and a hydrophobic essential oil thymol assisted the 

formation of continuous capsule matrices but had different effects on release profiles. Tween 40 

did not change the release characteristics of lysozyme, i.e., no sustained release for the capsules 

without additives, while thymol resulted in gradual release of lysozyme, especially at pH 8. For 

all samples, a slower release was observed at a higher pH due to stronger attraction between the 

carrier polymer zein and the encapsulated lysoyzme. The results emphasized the significance of 

both capsule microstructure and molecular interactions for designing antimicrobial delivery 

systems. Although the exact physicochemical mechanisms associated with the addition of Tween 

40 and thymol are still unknown, this work demonstrated the feasibility to produce food grade 

delivery systems of antimicrobials by carefully studying formulations and processing conditions 

during spray drying. Low cost ingredients and scalable processes used are advantageous to 

produce affordable antimicrobial delivery systems to enhance microbial food safety and reduce 

food spoilage. 
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Appendix 

 
Table 6. 1 Summary of yields, encapsulation efficiencies and particle sizes of treatments. 

Feed composition 
Trial # 

Ethanol% Zein% Additive 
Diameter (μm)* Yield%** 

Encapsulation 

efficiency%*** 

A1 60% 6.4 —— 4.92 ± 2.84B 79.99 100 

A2 70% 4.8 —— 7.84 ± 2.72A 57.63 78.64 

A3 80% 3.2 —— 3.96 ± 2.67CD 64.59 94.08 

A4 90% 1.6 —— 4.03 ± 1.62BCD 56.64 84.48 

B1 90% 0.4 —— 3.66 ± 1.59D 64.36 83.13 

C1 90% 1.6 0.05% Tween 40 4.67 ± 2.25BC 56.64 89.17 

D1 90% 1.6 0.033% thymol 3.67 ± 2.12D 74.52 89.75 

* Numbers are averages ± one standard deviation. Numbers with different superscripts are statistically different (P < 0.05). 

** Yield% = 100% × (mass of collected product)/(non-solvent mass in the feed). 

*** Encapsulation efficiency% = 100% × (lysozyme units per mg product)/(lysozyme units per mg non-solvent mass in the feed).  
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B1A4A1 A2 A3

5 μm
60% EtOH 70% EtOH 80% EtOH 90% EtOH 90% EtOH  

Figure 6. 1. Microparticles of spray-dried samples. Image codes correspond to Trial #s in Table 6.1. 
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D1C1

2 μm 2 μm
 

Figure 6. 2. Microparticles of spray-dried samples C1 (with Tween 40) and D1 (with thymol) in Table 6.1. 
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Figure 6. 3. Comparison of microcapsule inner structures of samples A1 (60% ethanol), B1 (70% ethanol), C1 (with 0.5% 

Tween 40) and D1 (with thymol) in Table 6.1. 
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Figure 6. 4. In vitro release kinetics of lysozyme from zein microcapsules in potassium phosphate buffers at pH 2, 6, and 8. 

The capsules were produced using formulations of (A) 6.4% w/v zein dissolved in hen egg white (HEW) extract adjusted to 60% v/v 
ethanol, (B) 4.8% w/v zein dissolved in HEW extract adjusted to 70% v/v ethanol, and (C) 3.2% w/v zein dissolved in HEW extract 
adjusted to 80% v/v ethanol and (D) 1.6% w/v zein dissolved in HEW extract adjusted to 90% v/v ethanol. Error bars are 95% 
confidence intervals from triple tests. 
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Figure 6. 5. In vitro release kinetics of lysozyme from zein microparticles in potassium phosphate buffers at (A) pH 2, (B) pH 

6, and (C) pH 8. 
Microcapsules were produced from a hen-egg-white extract adjusted to 90% ethanol and subsequently dissolved with 1.6% zein, with 

or without additional 0.05% Tween40 or 0.033% thymol. Error bars are 95% confidence intervals from triple tests. 

 

Time (h)
0.1 1 10 100 1000

A
cc

um
ul

at
iv

e 
R

el
ea

se
 %

40

60

80

100

No Additive 
With 0.05% Tw40  
With 0.033% thymol

(B) pH6

Time (h)
0.1 1 10 100 1000

A
cc

um
ul

at
iv

e 
R

el
ea

se
 %

40

50

60

70

80

90

100

No additive
With 0.05% Tw40
With 0.033% thymol

(C) pH8

Time (h)
0.1 1 10 100 1000

A
cc

um
ul

at
iv

e 
R

el
ea

se
 %

50

60

70

80

90

100

110

No additive
With 0.05% Tw40
With 0.033%thymol

pH2(A)



www.manaraa.com

 132

Vita 
 

Minfeng Jin was born on June 20, 1979 in Shanghai, China, where her mother and her 

sister still reside. After graduating from Minhang High School in Shanghai, she entered 

Huazhong Agriculture University to purse a bachelor’s degree in Food Science and Engineering. 

She completed her B.S. degree in Food Science in June of 2001, with a minor in Marketing 

received in December of 2000. In July of 2001, Minfeng started her career as a product specialist 

in a healthcare food company in Shanghai. She led the new product team to develop and launch a 

supplementary calcium tablet fermented with beneficial bacteria to enhance the absorption 

ability in GI track, for which the sales was ￥6 million (RMB Yuan) in the first year after 

launching. After that, she joined a committee to establish a new company which produced 

beef/fish snack foods in Shanghai. She set up the food chemistry and food microbiology labs, 

and complemented the Standard Operation Procedures of processing food products and ISO 

management documents for the company. 

Minfeng always wanted to broaden and deepen her knowledge and insight of food 

industry in the global economy. In August of 2006, she came to Knoxville, TN, to begin her M.S. 

degree in the Food Science and Technology Department at the University of Tennessee, under 

the guidance of Dr. Qixin Zhong on the development of microencapsulation techniques for a 

naturally-occurring antimicrobial, lysozyme with a biopolymer corn zein. After completion of 

her M.S. study, Minfeng hopes to receive advanced education and explore opportunities in the 

food industry of the U.S.A. 

 


	Sustained release of lysozyme encapsulated in zein micro- and nanocapsules
	Recommended Citation

	1.1. Role of Antimicrobials in Food Safety and Quality
	1.2. Demands and Challenges of Antimicrobial Delivery Systems
	1.2.1. Purpose and Usage
	1.2.2. Carrier Materials and Antimicrobial Agents
	1.2.3. Techniques for Developing Antimicrobial Delivery Systems

	1.3. Scope of the Work
	 References
	2.1. Characteristics of Zein
	2.1.1. Composition and Solubility
	2.1.2. Structure of Zein

	2.2. Manufacture of Zein
	2.2.1. Raw Materials
	2.2.2. Extraction of Zein
	2.2.3. Commercial Production of Zein

	2.3. Applications of Zein
	2.3.1. Non-Food Applications
	2.3.2. Food Applications

	2.4. Properties and Functionality of Lysozyme
	2.4.1. Physicochemical Properties of Lysozyme
	2.4.2. Antimicrobial Mechanism of Lysozyme

	2.5. Techniques of Developing Particulate Antimicrobial Delivery Systems 
	 References
	3.1. Abstract
	3.2. Introduction
	3.3. Materials and Methods
	3.3.1. Materials
	3.3.2. Protocol of Producing Nanoparticles
	3.3.3. Scanning Electron Microscopy (SEM)
	3.3.4. Production of Zein Nanoparticles with Encapsulated Lysozyme 
	3.3.5. Evaluation of in vitro Release Kinetics
	3.3.6. Measurement of Lysozyme Activity
	3.3.7. Rheological Measurements
	3.3.7.1. Sample preparation 
	3.3.7.2. Rheological tests 

	3.4. Results 
	3.4.1. Effect of Blending Speed 
	3.4.2. Effect of Ethanol Concentration
	3.4.3. Effect of Zein Concentration
	3.4.4. Lysozyme in vitro Release Kinetics
	3.4.5. Rheological Properties

	3.5. Discussion
	3.5.1. Particle Synthesis
	3.5.1.1. Effect of Blending Speed
	3.5.1.2. Effect of Ethanol Concentration
	3.5.1.3. Effect of Zein Concentration 
	3.5.2. In vitro release Kinetics of Lysozyme
	3.5.3. Rheological Properties

	3.6. Conclusions
	 References
	4.1. Abstract
	 4.2. Introduction
	4.3. Materials and Methods
	4.3.1. Materials
	4.3.2. Apparatus and Particle Production Protocol 
	4.3.3. Measurement of Encapsulation Efficiency
	4.3.4. Evaluation of in vitro Release Kinetics
	4.3.5. Measurement of Lysozyme Activity
	4.3.6. Scanning Electron Microscopy (SEM)

	4.4. Results and discussion
	4.4.1. Particle Structures
	4.4.2. Encapsulation Efficiency and Release Kinetics

	4.5. Conclusions
	 References
	5.1. Abstract
	5.2. Introduction
	5.3. Materials and Methods
	5.3.1. Materials
	5.3.2. Extraction Protocol
	5.3.3. Determination of Lysozyme Activity 
	5.3.4. Determination of Total Protein Content 
	5.3.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
	5.3.6. Data Analyses

	5.4. Results and Discussion
	5.4.1. Extraction Kinetics
	5.4.2. Extraction pH
	5.4.3. Ethanol Concentration
	5.4.4. SDS-PAGE
	5.4.5. Effect of Ethanol Concentration on the Measured Lysozyme Activity
	5.4.6. Precipitation of Lysozyme at High Ethanol Concentrations 

	5.5. Conclusions
	References
	 
	6.1. Abstract
	 6.2. Introduction
	6.3. Materials and Methods
	6.3.1. Materials
	6.3.2. Extraction of Lysozyme from HEW
	6.3.3. Production of Microparticles using Spray Drying
	6.3.4. Scanning Electron Microscopy (SEM)
	6.3.5. Determination of Yield and Encapsulation Efficiency
	6.3.6. Evaluation of in vitro Release Kinetics
	6.3.7. Measurement of Lysozyme Activity
	6.3.8. Statistical Analysis

	6.4. Results and Discussion
	6.4.1. Yield, Encapsulation Efficiency, and Particle Size
	6.4.2. Surface Morphologies and Inner Structures 
	6.4.3. In vitro Release Kinetics of Lysozyme from Capsules without Additives
	6.4.4. In vitro Release Kinetics of Lysozyme from Capsules with Tween 40 or Thymol

	6.5. Conclusions
	 References
	 
	Vita

